K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

Sửa ở trên đầu tiên: Cho \(\Delta\)ABC cân tại A, kẻ AH \(\perp\)BC (H \(\in\)BC).

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là tia phân giác

b: ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC

c: Xét tứ giác ADEH có

B là trung điểm của AE

B là trung điểm của DH

Do đó: ADEH là hình bình hành

Suy ra: AH//DE

a) Xét t/giác BAH và t./giác CAH có

AHB=AHC (=90 độ)

AH là cạnh chung

AB=AC( t/giác ABC cân tại A)

Do đó t/giác BAH= t/giácCAH(chcgv)

           suy ra HB=HC(2 cạnh t/ứ)

                      BAH=CAH(2 góc tương ứng)

suy ra AH là tia pg của BAC

b)Xét t/giác DBE và t/giác HBA có

   AB=AE(gt)

  DB=DH(gt)

 ABH=DBE( 2 góc đối đỉnh)

Do đó t/giác DBE= t/giác HBA(cgc)

 suy ra BAH=BED( 2 góc t/ứ)

Mà BAH và BED là 2 góc ở vị trí SLT của 2 đường thẳng AH và DE 

suy ra AH//DE

c) Ta có DH=DB+BH

   suy ra DH=2BH ( DB=BH)

Do đó DH>BH

Mà DH đối diện với góc DAH 

     BH đối diện với hóc BAH

suy ra DAH>BAH

( sr mình ko bt lm câu d gianroi)

17 tháng 4 2016

Bạn tự vẽ hình nha!

a.

Ta có:

  • B1 + B2 = 180
  • C1 + C2 = 180 

mà B1 = C1 (tam giác ABC cân tại A)

=> B2 = C2 (1)

Xét tam giác ADB và tam giác AEC:

AB = AC (tam giác ABC cân tại A)

B2 = C2 (theo 1)

BD = CE (gt)

=> Tam giác ADB = ACE (c.g.c)

=> AD = AE (2 cạnh tương ứng)

=> Tam giác ADE

b.

Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:

 AB = AC (tam giác ABC cân tại A)

A1 = A2 (tam giác ADB = tam giác AEC)

=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)

=> BH = CK (2 cạnh tương ứng)

     AH = AK (2 cạnh tương ứng)

c.

Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:

BH = CK (theo câu b)

BD = CE (gt)

=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)

Ta có: 

DBH = IBC (2 góc đối đỉnh)

KCE = ICB (2 góc đối đỉnh)

mà DBH = KCE (tam giác HDB = tam giác KEC)

=> IBC = ICB 

=> Tam giác IBC cân tại I