K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2020

b) Đặt a+b=s và ab=p. Ta có: \(a^2+b^2=4-\left(\frac{ab+2}{a+b}\right)^2\Leftrightarrow\left(a+b\right)^2-2ab+\frac{\left(ab+2\right)^2}{\left(a+b\right)^2}=4\)

\(\Leftrightarrow s^2-2p+\frac{\left(p+2\right)^2}{s^2}=4\Leftrightarrow s^4-2ps^2+\left(p+2\right)^2=4s^2\)

\(\Leftrightarrow s^4-2s^2\left(p+2\right)+\left(p+2\right)^2=0\Leftrightarrow\left(s^2-p-2\right)^2=0\)

\(\Leftrightarrow s^2-p-2=0\Leftrightarrow p+2=s^2\Leftrightarrow\sqrt{p+2}=\left|s\right|\Leftrightarrow\sqrt{ab+2}=\left|a+b\right|\)

Vì a, b là số hữu tỉ nên |a+b| là số hữu tỉ. Vậy \(\sqrt{ab+2}\)là số hữu tỉ

19 tháng 11 2017

Làm xong bt thầy nguyên chưa cu ? 

19 tháng 11 2017

x=y=z=1

14 tháng 9 2016

Chia làm hai trường hợp : 

TH1. Nếu x = y = z = 0 thì thỏa mãn đề bài.

TH2. Nếu \(x,y,z\ne0\) thì ta có : \(x=\sqrt{7}y-\sqrt{5}x\) . 

Dễ dàng chứng minh được \(\sqrt{5}\) và \(\sqrt{7}\) là các số vô tỉ . Mặt khác vì \(x,y,z\ne0\) nên \(\sqrt{7}y-\sqrt{5}x\) là số vô tỉ (Vô lí vì x là số hữu tỉ)

Vậy trường hợp này không xảy ra.

Vậy x = y = z = 0

23 tháng 9 2018

Bình phương 2 vế ta được:
\(\Rightarrow x^2+5z^2+2\sqrt{5}xz=7y^2.\)

\(\Rightarrow\frac{7y^2-x^2-5z^2}{2xz}=\sqrt{5}\)
Vì x;y;z hữu tỉ nên VT hữu tỉ
mà VP vô tỉ
Vậy không tồn tại x;y;z hữu tỉ thoả mãn điều kiện trên