K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

gọi biểu thức là A

ta có : 

A=3/1.2.3 + 5/2.3.4 +  7/3.4.5 +....+ 2017/1008.1009.1010

A= (1.2/1.2.3 + 2.2/2.3.4 + 3.2/3.4.5 + ... + 1008.2/1008.1009.1010) + (1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/1008.1009.1010)

A=(2/2.3 + 2/3.4 + 2/4.5 +...+ 2/1009.1010 + 1/2.(1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5 + ... + 1/1008.1009 - 1/1009.1010

A=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/1009-1/1010)+1/2.(1/2-1/1009.1/1010)

A<2.1/2 + 1/2.1/2 = 1+1/4 = 5/4 

OK nhớ tk cho mình nhé ( dấu này / là dấu phần nhé) chúc bạn học tốt

10 tháng 4 2019

thank

27 tháng 6 2018

Gọi biểu thức là \(A\). Ta có :

\(A=\dfrac{3}{1.2.3}+\dfrac{5}{2.3.4}+\dfrac{7}{3.4.5}+...+\dfrac{2017}{1008.1009.1010}\)

\(A=\left(\dfrac{1.2}{1.2.3}+\dfrac{2.2}{2.3.4}+\dfrac{3.2}{3.4.5}+...+\dfrac{1008.2}{1008.1009.1010}\right)+\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{1008.1009.1010}\right)\)\(A=\left(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{1009.1010}\right)+\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{1008.1009}-\dfrac{1}{1009.1010}\right)\)

\(A=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{1009}-\dfrac{1}{1010}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{1009.1010}\right)\)

\(A< 2.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{2}=1+\dfrac{1}{4}=\dfrac{5}{4}\)

16 tháng 6 2018

kieu mo mau no the(dung hoi vi sao)?

1.2.3.

=>tiep theo la 4

17 tháng 12 2018

Khi gặp dạng như thế này, ta xét số hạng như thế này thì ta sẽ có được số cần nhân chính là số liền sau của số cuối cùng trong tích đó. Nói dễ hiểu hơn là nếu có A = 1.2 + 2.3 + 3.4 +... thì ta xét số hạng đầu tiên của tổng là 1.2 thì ta có số liền sau của 2 là 3. Vậy nên nhân A cho 3. Cái này gọi là quy luật để giải quyết bài toán kiểu này rồi.