Tìm đa thức P(x) thỏa mãn P(x) chia cho x + 3 dư 1, chia cho x + 4 dư 8, chia cho (x + 3)(x - 4) được thương là 3x và còn dư.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(P\left(x\right)\)chia cho x+3 du 1 nên
\(P\left(x\right)=\left(x+3\right)q\left(x\right)+1\)
\(\Rightarrow P\left(-3\right)=\left(-3+3\right)q\left(-3\right)+1=1\left(1\right)\)
Vì P(x) chia cho x-4 dư 8 nên
\(P\left(x\right)=\left(x-4\right)q\left(x\right)+8\)
\(\Rightarrow P\left(4\right)=8\left(2\right)\)
Vì P(x) chia cho (x+3)(x-4) được thương là 3x và còn dư
\(\Rightarrow P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\left(3\right)\)
Từ (1), (2)và (3) \(\Rightarrow\hept{\begin{cases}-3a+b=1\\4a+b=8\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=4\end{cases}\left(4\right)}}\)
Thay (4) vào (3) ta được: \(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+x+4\)
Xin phép tách nhé !!!
\(P\left(x\right)=Q\left(x\right)\left(x+3\right)+1;P\left(x\right)=R\left(x\right)\left(x-4\right)+8\)
\(\left(x+3\right)\left(x-4\right)\) là bậc 2 nên số dư bậc nhất:ax+b
\(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\)
Áp dụng định lý Bezout:
\(P\left(-3\right)=1;P\left(4\right)=8\)
\(\Rightarrow1=P\left(-3\right)=-3a+b\)
\(8=P\left(4\right)=4a+b\)
Ta có \(-3a+b=1;4a+b=8\Rightarrow7a=7\Rightarrow a=1\Rightarrow b=4\)
Khi đó:\(P\left(x\right)=\left(x+3\right)\left(x+4\right)3x+x+4\)
Nếu bạn rảnh thì phá ngoặc ra thành đa thức bậc 3 cũng được nha,thế thì hay hơn,mà mình lại nhác :V
\(\left(x+1\right)\left(6x+8\right)\left(6x+7\right)^2=12\)
\(\Leftrightarrow\left(6x+6\right)\left(6x+8\right)\left(6x+7\right)^2=72\)
Đặt \(6x+7=t\)
Ta có:\(\left(t-1\right)\left(t+1\right)t^2=72\)
\(\Leftrightarrow t^2\left(t^2-1\right)=72\)
\(\Leftrightarrow t^4-t^2-72=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+3\right)\left(t^2+8\right)=0\)
\(\Leftrightarrow t=3;t=-3\)
\(\Leftrightarrow6x+7=3;6x+7=-3\)
\(\Leftrightarrow x=-\frac{2}{3};x=-\frac{5}{3}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{2}{3};-\frac{5}{3}\right\}\)
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
F(x) = ( x + 3 )( x - 4 ).3x + ax + b
F(-3) = 1 => -3a + b = 1 => b = 1 + 3a
F(4) = 8 => 4a + b = 8 thay b = 1 + 3a
=> 7a + 1 = 8 => a = 1 => b = 1 + 3 = 4
=> f(x) = ( x + 3 )( x - 4 ).3x + x + 4
đến đây chỉ việc nhân ra thôi
Theo định lý Bezout: số dư khi chia P(x) cho x + 2 là P(-2) => P(-2) = 3,589
Số dư khi chia P(x) cho x - 3 là P(3) => P(3) = 4,237
Gọi số dư khi chia P(x) cho (x + 2)(x - 3) là ax + b (a ≠ 0)
Ta có: P(x) = (2x + 1)(x + 2)(x - 3) + ax + b
= 2x3 - x2 - (13 - a)x - 6 + b
=> P(-2) = -2a + b = 3,589 (1); P(3) = 3a + b = 4,237 (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}-2a+b=3,589\\3a+b=4,237\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=0,648\\-2a+b=3,589\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0,1296\\b=3,8482\end{matrix}\right.\) (t/m)
=> P(x) = 2x3 - x2 - 12,8704x - 2,1518
=> P(2) = 16 - 4 - 25,7408 - 2,1518 = -15,8926
P(20) = 16000 - 400 - 257,408 - 2,1518 = 15340,4402
Chia \(\left(x+3\right)\left(x-4\right)\) chứ ko phải chia \(\left(x+3\right)\left(x+4\right)\) à?
\(P\left(x\right)=\left(x+3\right).Q\left(x\right)+1\) \(\Rightarrow P\left(-3\right)=1\)
\(P\left(x\right)=\left(x+4\right)R\left(x\right)+8\) \(\Rightarrow P\left(-4\right)=8\)
\(P\left(x\right)=\left(x+3\right)\left(x-4\right).3x+ax+b\)
Thay \(x=-3\) vào ta được:
\(P\left(-3\right)=-3a+b\Rightarrow-3a+b=1\)
Thay \(x=-4\) vào ta được:
\(P\left(-4\right)=\left(-4+3\right)\left(-4-4\right).3\left(-4\right)-4a+b\)
\(\Rightarrow-4a+b-96=8\Rightarrow-4a+b=104\)
\(\Rightarrow\left\{{}\begin{matrix}-3a+b=1\\-4a+b=104\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-103\\b=-308\end{matrix}\right.\)
\(\Rightarrow P\left(x\right)=3x\left(x+3\right)\left(x-4\right)-103x-308\)
ban sai roi
x-4 mới đúng giai ra 3(x^3) -3(x^2) -35x+4