Cho parabol (P): y=x2 và đường thẳng y=x+2. Tìm m để (P), (d) và đường thẳng (\(\Delta\)): y=(2m-3)x-1 cùng đi qua một điểm có hoành độ lớn hơn 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
De (P),(d),\(\left(\Delta\right)\),cung giao nhau tai mot diem co hoanh do lon hon mot thi x>1
Hoanh do giao diem la nghiem cua phuong trinh:
x2=x+2 \(\Leftrightarrow\)x2-x-2=0
\(\Delta\)=9
x1=2(tm)
x2=-1(loai)
thay x=2 vao y=x2 ta co: y=(2)2=4
thay x=2,y=4 vao \(\left(\Delta\right):y=\left(2m-3\right)x-1\)
4=(2m-3)2 -1
\(\Leftrightarrow4=4m-7\)
\(\Leftrightarrow m=\frac{11}{4}\)
vay m=11/4 thi (P),(d),\(\left(\Delta\right)\)cung giao nhau tai mot diem co hoanh do >1
a: Thay x=0 và y=-5 vào (d), ta được:
2(m+1)*0-m^2-4=-5
=>m^2+4=5
=>m=1 hoặc m=-1
b:
PTHĐGĐ là;
x^2-2(m+1)x+m^2+4=0
Δ=(2m+2)^2-4(m^2+4)
=4m^2+8m+4-4m^2-16=8m-12
Để PT có hai nghiệm phân biệt thì 8m-12>0
=>m>3/2
x1+x2=2m+2; x1x2=m^2+4
(2x1-1)(x2^2-2m*x2+m^2+3)=21
=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21
=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21
=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21
=>(2x1-1)(2x2-1)=21
=>4x1x2-2(x1+x2)+1=21
=>4(m^2+4)-2(2m+2)+1=21
=>4m^2+16-4m-4-20=0
=>4m^2-4m-8=0
=>(m-2)(m+1)=0
=>m=2(nhận) hoặc m=-1(loại)
Phương trình hoành độ giao điểm là:
\(x^2-mx+2m-4=0\)
\(\Delta=\left(-m\right)^2-4\left(2m-4\right)\)
\(=m^2-8m+16=\left(m-4\right)^2\)
Để (P) cắt (d) tại hai điểm phân biệt thì m-4<>0
hay m<>4
Ta có: \(x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=m^2-2\left(2m-4\right)\)
\(=m^2-4m+8\)
\(=\left(m-2\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi m=2