K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

BĐT svac

\(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\forall a,b>0\)

NV
20 tháng 9 2020

\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(VT\ge\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}=\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\left(\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{1}{a+b}+\frac{1}{c+a}\right)\)

\(VT\ge\frac{4}{a+2b+c}+\frac{4}{a+b+2c}+\frac{4}{2a+b+c}\)

Dấu "=" xảy ra khi \(a=b=c\)

13 tháng 10 2018

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\frac{b}{ab}+\frac{a}{ab}\ge\frac{4}{a+b}\)

\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)

13 tháng 10 2018

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) \(\left(ĐK:a>0;b>0\right)\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (BĐT luôn đúng)

Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

28 tháng 2 2016

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow ab+b^2+a^2+ab\ge4ab\left(a,b>0\right)\)

<=>a2+b2-2ab\(\ge\)0

<=>(a-b)2\(\ge\)0(luôn đúng)

=>điều cần chứng minh

28 tháng 2 2016

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)

(a + b) (a + b) \(\ge\) 4ab

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

Mà a,b > 0 nên a + b > 0 

=> \(\left(a+b\right)^2\ge4ab\)

NV
16 tháng 3 2019

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

10 tháng 7 2019

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

11 tháng 7 2019

1)Áp dụng bđt AM-GM:

\(2\left(ab+\frac{a}{b}+\frac{b}{a}\right)=\left(ab+\frac{a}{b}\right)+\left(ab+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\ge2\left(a+b+1\right)\)

\(\Leftrightarrow ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1."="\Leftrightarrow a=b=1\)

2) Áp dụng bđt AM-GM ta có: \(a+\frac{1}{a-1}=a-1+1+\frac{1}{a-1}\ge2\sqrt{\left(a-1\right).\frac{1}{a-1}}+1=3\)

\("="\Leftrightarrow a=2\)

3) Áp dụng bđt AM-GM:

\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)=\left(\frac{ab}{c}+\frac{bc}{a}\right)+\left(\frac{ac}{b}+\frac{ab}{c}\right)+\left(\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

Cộng theo vế và rg => ddpcm. Dấu bằng khi a=b=c

29 tháng 11 2015

bạn lấy a/b^2 với 1/a cosi và những cái khác cũng vậy là ra

20 tháng 12 2015

\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ca}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vì \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x