Tính:
1+1/2+1/2^2+...+1/2^99+2/2^100
ai đúng mk tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+...+\frac{1}{99}.\frac{1}{100}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
1+(-2)+3+(-4)+.......+19+(-20)
=(1+(-2))+(3+(-4))+....+(19+(-20)) có 10 nhóm như vậy
=(-1)+(-1)+.....+(-1)
=-10
a) 1 + (-2) + 3 + (-4) + ... + 19 + (-20)
= 1 - 2 + 3 - 4 + ... + 19 - 20
= ( 1 + 3 + ... + 19 ) - ( 2 + 4 + ... + 20 )
Số số hạng VT : ( 19 - 1 ) : 2 + 1 = 10 ( số )
Tổng VT = ( 19 + 1 ) . 10 : 2 = 100
Số số hạng VP : ( 20 - 2 ) : 2 + 1 = 10 ( số )
Tổng VP là : ( 20 + 2 ) x 10 : 2 = 110
Ta có biểu thức :
100 - 110
= -10
a)Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số) tổng của tử số của A là: (101+1).101:2=5151.
Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:101:2=50(dư 1 số)(số 1).
Vậy tổng mẫu số của A là : (101-100).50+1=51.Vậy A=5151:51=101
b) 3737.43-4343.37/2+4+6+...+100=101.37.43-101.43.37/2+4+6+...+100=101.(43.37-37.43)/2+4+6+...+100=0/2+4+6+...+100=0
a)Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số) tổng của tử số của A là:
(101+1).101:2=5151.
Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:
101:2=50(dư 1 số)(số 1).
Vậy tổng mẫu số của A là :
(101-100).50+1=51.Vậy A=5151:51=101
b) 3737.43-4343.37/2+4+6+...+100=101.37.43-101.43.37/2+4+6+...+100=101.(43.37-37.43)/2+4+6+...+100=0/2+4+6+...+100=0
100^2-99^2 = (100-99)x(100+99) =199
tương tự 98^2-97^2=195
=> cái bỉu thức trên thành
199+195+191+....+3
số số hạng: (199-3):4 + 1=50
tổng: [(199+3)*50]:2=5050
nếu thấy đúng thì k cho mình nha
= 100 x 100 - 99x99 - 98x98-...........-2x2-1x1
=(100-99-98-...-2-1) x (100-99-98-...-2-1)
=-4850x(-4850)
=23522500
\(A=2^{100}-2^{99}+2^{98}-2^{97}+....+2^2-2\)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+....+2^3-2^2\)
\(2A+A=2^{101}-2\)
\(A=\frac{2^{101}-2}{3}\)
b) tương tự
\(B=\frac{3^{101}+1}{4}\)
Đặt \(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\Rightarrow2S-S=S=1-\frac{1}{2^{100}}\)
ko đề p/s cuối là 2/2^100 mà