K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

a, (a+b+c)-(a-b+c)

= a+b+c-a+b-c

= 2b

b, (a+b+c)+(a-b)-(a-b-c)

=a+b+c+a-b-a+b+c

=a+b+2c

23 tháng 12 2017

a/ \(\left(a+b+c\right)-\left(a-b+c\right)\)

\(=a+b+c-a+b-c\)

\(=\left(a-a\right)+\left(b+b\right)+\left(c-c\right)\)

\(=0+0+2b\)

\(=2b\)

b/ \(\left(a+b-c\right)+\left(a-b\right)-\left(a-b-c\right)\)

\(=a+b-c+a-b-a+b+c\)

\(=\left(a+a-a\right)+\left(b-b+b\right)+\left(-c+c\right)\)

\(=a+b\)

6 tháng 5 2021

a)50mA= ....0,05.......A

b)27mV=............mA (?)

c)500kV=...500 000........V

d)5,1A=....5100.......mA

14 tháng 1 2017

Bài 1 :

\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)

Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)

                 \(=a-b+c-d-a+c\)

                 \(=-\left(b+d\right)=VP\)

\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)

\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)

Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)

                 \(=a-b-c+d+b+c\)

                 \(=a+d=VP\)

\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)

9 tháng 5 2018

chứng minh cái gì vậy bạn ???

12 tháng 1 2020

1)   \(\left(a+b\right)-\left(-a+b-c\right)+\left(c-a-b\right)\)

\(=a+b+a-b+c+c-a-b\)

\(=a-b+2c \left(đpcm\right)\)

2)  \(a\left(b-c\right)-a\left(b+d\right)\)

\(=ab-ac-ab-ad\)

\(=-ac-ad\)

\(=-a\left(c+d\right) \left(đpcm\right)\)

8 tháng 2 2021

a) Sửa đề CMR : \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\) 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

=> \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(\text{vì }\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\right)\)

=> \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(\text{đpcm}\right)\)

b) |17x - 5| - |17x + 5| = 0

=> |17x - 5| = |17x + 5|

=> \(\orbr{\begin{cases}17x-5=17x+5\\17x-5=-17x-5\end{cases}}\Rightarrow\orbr{\begin{cases}0x=10\\34x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\in\varnothing\\x=0\end{cases}}\Rightarrow x=0\)

Vậy x = 0 là giá trị cần tìm