Tim n để A, B có gt nguyên
\(a\frac{n-2}{n+2}\left(n\ne-2\right)\)
\(b\frac{2n+1}{n+1}\left(n\ne-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điều kiện xác định: n khác 4
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)
Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)
\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)
Vậy .............
b) \(n\in\left\{-2;-4\right\}\)
c) \(n\in\left\{-2;-1;3;5\right\}\)
d) \(n\in\left\{0;-2;2;-4\right\}\)
e) \(n\in\left\{0;2;-6;8\right\}\)
(Bài này có 1 bạn hỏi rồi bạn nhé!!!)
Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0 <=> n khác 7
b) Với n = 7 thì mẫu số bằng 0 => phân số không tồn tại
c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)
Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)
Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)
Ta có :
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)
Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)
\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)
Để A nguyên thì n-2\(⋮\)n+1.
Ta có:n-2=n+1-1-2=(n+1)-3
Vì (n+1)\(⋮\)(n+1)\(\Rightarrow\)3\(⋮\)n+1\(\Rightarrow\)n+1\(\in\) Ư(3)={\(\pm\)1,\(\pm\)3}
\(\Leftrightarrow\left[{}\begin{matrix}n+1=1\\n+1=-1\\n+1=3\\n+1=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}n=1-1\\n=-1-1\\n=3-1\\n=-3-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=-2\\n=2\\n=-4\end{matrix}\right.\)
để a có giá trị nguyên khi n-2 chia hết n+2
Ta có: n-2 chia hết cho n+2 => n+2-4chia hết cho n+2
Vì n+2 chia hết cho n+2 => 4 chia hết cho n+2 => n+4 thuộc Ư4
Ư4 = {+-1,+-2,+-4}
=> n thuộc { -5,-3,-6,0,-8} thì a có giá trị nguyên
B=\(\frac{2n+1}{n+1}\)
để B có giá trị nguyên khi 2n+1 chia hết cho n+1
Ta có: 2n+1 chia hết cho n+1 => 2n+2-1chia hết cho n+1
Vì 2n+2chia hết cho n+1 => 1 chia hết cho n+1
TH1: n+1=1 => n=0
TH2: n+1=-1 => n=-2
a, Để \(\frac{n-2}{n+2}\in Z\Rightarrow n-2⋮n+2\)
\(\Rightarrow n+2-4⋮n+2\)
\(\Rightarrow4⋮n+2\)
\(n+2\inƯ\left(4\right)\)
\(\Rightarrow n+2\in\left\{\pm1,\pm2,\pm4\right\}\)
\(\Rightarrow n\in\left\{-3,-1,-4,0,2,-6\right\}\)