K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

a/ $3\sqrt 7=\sqrt{63}$

$2\sqrt{15}=\sqrt{60}$

Ta có: 63>60

$\Rightarrow\sqrt{63}>\sqrt{60}$ hay $3\sqrt 7>2\sqrt{15}$

b/ $-4\sqrt 5=-\sqrt{80}$

$-5\sqrt 3=-\sqrt{75}$

Ta có: 80>75

$\Rightarrow \sqrt{80}>\sqrt{75}$

$\Rightarrow-\sqrt{80}<-\sqrt{75}$ hay $-4\sqrt 5<-5\sqrt 3$

19 tháng 9 2021

\(a,\left(\sqrt{\sqrt{3}}\right)^4=3< 4=\left(\sqrt{2}\right)^4\Rightarrow\sqrt{\sqrt{3}}< \sqrt{2}\\ b,\left(\sqrt{2\sqrt{3}}\right)^4=12< 18=\left(\sqrt{3\sqrt{2}}\right)^4\Rightarrow\sqrt{2\sqrt{3}}=\sqrt{3\sqrt{2}}\\ c,\left(2+\sqrt{6}\right)^2=8+4\sqrt{6};5^2=25=8+17;\left(4\sqrt{6}\right)^2=96< 289=17^2\\ \Rightarrow4\sqrt{6}< 17\Rightarrow2+\sqrt{6}< 5\\ d,\left(7-2\sqrt{2}\right)^2=57-28\sqrt{2};4^2=16=57-41;\left(28\sqrt{2}\right)^2=1568< 41^2=1681\\ \Rightarrow28\sqrt{2}< 41\Rightarrow7-2\sqrt{2}>4\\ e,\left(\sqrt{15}+\sqrt{8}\right)^2=23+4\sqrt{30};7^2=49=23+26;\left(4\sqrt{30}\right)^2=240< 676=26^2\\ \Rightarrow4\sqrt{30}< 26\Rightarrow\sqrt{15}+\sqrt{8}< 7\)

\(f,\left(\sqrt{37}-\sqrt{14}\right)^2=51-2\sqrt{518};\left(6-\sqrt{15}\right)^2=51-12\sqrt{15};\left(2\sqrt{518}\right)^2=2072;\left(12\sqrt{15}\right)^2=2160\\ \Rightarrow2\sqrt{518}< 12\sqrt{15}\Rightarrow\sqrt{37}-\sqrt{14}>6-\sqrt{15}\)

19 tháng 9 2021

em cảm ơn ạ <3

b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)

\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)

mà 80>75

nên \(4\sqrt{5}>5\sqrt{3}\)

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

Bài 1: 

Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)

Số giá trị nguyên thỏa mãn điều kiện là:

\(\left(2+4\right)+1=7\)

 

12 tháng 7 2021

\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)

\(=\sqrt{12}+1=2\sqrt{3}+1\)

\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}-1\)

\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)

\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)

2) biến đổi khúc sau như câu 1:

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

 

12 tháng 7 2021

1) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-\sqrt{13+\sqrt{4.12}}}=\sqrt{5-\sqrt{13+2\sqrt{12}}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{12}\right)^2+2.\sqrt{12}+1^2}}=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{5-\left|\sqrt{4.3}+1\right|}\)

\(=\sqrt{5-\left(2\sqrt{3}+1\right)}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=2\sqrt{3+\sqrt{3}-1}=2\sqrt{2+\sqrt{3}}\)

\(=2\sqrt{\dfrac{4+2\sqrt{3}}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}\)

\(=2.\dfrac{\left|\sqrt{3}+1\right|}{\sqrt{2}}=\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{6}+\sqrt{2}\)

2) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{3}-1\) (như trên)

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\) 

\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)

 

 

a) <

b) <

c) >

d) <

      a <

            b <

                           c >

                   d <

1 tháng 7 2017

dell bt

2 tháng 6 2017

Võ Đông Anh Tuấn

Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)

a)

\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)

Vậy \(7>3\sqrt{5}\)

b)

\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)

Vậy \(8< 2\sqrt{7}+3\)

c)

\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)

Vậy \(3\sqrt{6}< 2\sqrt{15}\)

2 tháng 8 2023

\(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)

\(=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\)

\(=\sqrt{5}+\dfrac{\sqrt{5}}{2}\)

\(=\dfrac{2\sqrt{5}+\sqrt{5}}{2}\)

\(=\dfrac{3\sqrt{5}}{2}\)