cho tam giác abc cân tại a và 2 đường trung tuyến BE và CF cắt nhau tại D
a)CM:tam giác ADE=tam giác ADF
b)CM:tam giác BDC cân
c)CM:BC < 4DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔAGM và ΔCKM có
MA=MC
\(\widehat{AMG}=\widehat{CMK}\)
MG=MK
Do đó: ΔAGM=ΔCKM
Suy ra: \(\widehat{AGM}=\widehat{CKM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AG//KC
c: Xét ΔABC có
AH là đường trung tuyến ứng với cạnh BC
BM là đường trung tuyến ứng với cạnh AC
AH cắt BM tại G
Do đó: G là trọng tâm của ΔBAC
Suy ra: \(BG=\dfrac{2}{3}BM\)
\(\Leftrightarrow GM=MK=\dfrac{1}{3}BM\)
\(\Leftrightarrow BG=GK\)
hay G là trung điểm của BK
a: Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC tại K
Xét ΔBKA vuông tại K và ΔBFC vuông tại F co
góc KBA chung
=>ΔBKA đồng dạng với ΔBFC
b: ΔBKA đồng dạng với ΔBFC
=>BK/BF=BA/BC
=>BK*BC=BF*BA và BK/BA=BF/BC
c: Xét ΔBKF và ΔBAC có
BK/BA=BF/BC
góc KBF chung
=>ΔBKF đồng dạng vơi ΔBAC
5:
a: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
=>ΔABI=ΔACI
b: ΔABI=ΔACI
=>góc AIB=góc AIC=180/2=90 độ
=>góc AIB, góc AIC là các góc vuông
c: BI=CI=6/2=3cm
AI=căn 5^2-3^2=4cm
1:
a: Xét ΔAEB và ΔAFC có
AE=AF
góc A chung
AB=AC
=>ΔAEB=ΔAFC
b: ΔAEB=ΔAFC
=>góc ABE=góc ACF
=>góc DBC=góc DCB
=>ΔDBC cân tại D
c: AB=AC
DB=DC
=>AD là trung trực của BC