Với x,y,z,t >0 thỏa mãn: x+y+z+t =4. Tìm GTNN của biểu thức:
A=\(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}+\frac{1}{t^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x+y+z+t\ge4\sqrt[4]{xyzt}\Rightarrow xyzt\le1\)
Áp dụng BĐT: \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{2}{\sqrt{ab}+1}\)
\(A=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}+\frac{1}{t^2+1}\ge\frac{2}{xy+1}+\frac{2}{zt+1}=2\left(\frac{1}{xy+1}+\frac{1}{zt+1}\right)\)
\(A\ge2.\left(\frac{2}{\sqrt{xyzt}+1}\right)\ge\frac{2.2}{1+1}=2\)
\(\Rightarrow A_{max}=2\) khi \(x=y=z=t=1\)
Dòng 3 sang 4 bạn vẫn áp dụng BĐT \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{2}{\sqrt{ab}+1}\) với \(a=xy;b=zt\)
Sau đó do \(xyzt\le1\Rightarrow\sqrt{xyzt}+1\le1+1=2\Rightarrow2.\frac{2}{\sqrt{xyzt}+1}\ge\frac{2.2}{2}\)
\(M\left(x+y+z\right)=\left(z^2+y^2+z^2\right)+2+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)
\(=5+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)
\(\ge5+2\left(y+z\right)+2\left(z+x\right)+2\left(x+y\right)=5+4\left(x+y+z\right)\) ( Sử dụng BĐT Cô-si cho 2 số dương ý)
\(\Rightarrow M\ge\frac{5}{x+y+z}+4\)
Mặt khác: \(\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)=9\)
\(\Rightarrow x+y+z\le3\)
Do đó: \(M\ge\frac{5}{3}+4=\frac{17}{3}\)
\(M=\frac{17}{3}\Leftrightarrow x=y=z=1\)
\(\Rightarrow Min_A=\frac{17}{3}\)
BĐT Bunhiacopxky em chưa học cô ạ
Cô cong cách nào không ạ
Nguyễn Thị Nguyệt Ánh:
Vậy thì bạn có thể chứng minh $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$ thông qua BĐT Cô-si:
Áp dụng BĐT Cô-si:
$x+y+z\geq 3\sqrt[3]{xyz}$
$xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}$
Nhân theo vế:
$(x+y+z)(xy+yz+xz)\geq 9xyz$
$\Rightarrow \frac{xy+yz+xz}{xyz}\geq \frac{9}{x+y+z}$
hay $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$
Tham khảo link này nha
https://olm.vn/hoi-dap/detail/243232541423.htm
\(P=x+y+z+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge x+y+z+\frac{18}{x+y+z}\)
\(P\ge x+y+z+\frac{1}{x+y+z}+\frac{17}{x+y+z}\)
\(P\ge2\sqrt{\left(x+y+z\right)\frac{1}{\left(x+y+z\right)}}+\frac{17}{1}=19\)
\(P_{min}=19\) khi \(x=y=z=\frac{1}{3}\)
Từ hàng 2 rút gọn xuống hàng 3 OK rồi đúng ko?
Sử dụng BĐT: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow-\left(ab+bc+ca\right)\ge-\frac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow-\frac{1}{2}\left(ab+bc+ca\right)\ge-\frac{1}{6}\left(a+b+c\right)^2\)
\(S=x-\frac{xy^2}{1+y^2}+y-\frac{yz^2}{1+z^2}+z-\frac{zx^2}{1+x^2}\)
\(S\ge x+y+z-\frac{xy^2}{2y}-\frac{yz^2}{2z}-\frac{zx^2}{2x}\)
\(S\ge3-\frac{1}{2}\left(xy+yz+zx\right)\ge3-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)
\(S_{min}=\frac{3}{2}\) khi \(x=y=z=1\)
Bài này dùng Cô si ngược dấu:
Áp dụng BĐT Cô si:\(\frac{1}{x^2+1}=1-\frac{x^2}{x^2+1}\ge1-\frac{x^2}{2x}=1-\frac{x}{2}\)
Tương tự với ba BĐT còn lại và cộng theo vế ta được:\(VT\ge4-\frac{x+y+z+t}{2}=2\)
Dấu "=' xảy ra tại a = b = c = 1
Vậy min A = 2 khi và chỉ khi a = b = c = 1
tth ngược dấu nhé
\(A=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}+\frac{1}{t^2+1}\)
\(\Leftrightarrow\)\(-A+4=\left(1-\frac{1}{x^2+1}\right)+\left(1-\frac{1}{y^2+1}\right)+\left(1-\frac{1}{z^2+1}\right)+\left(1-\frac{1}{t^2+1}\right)\)
\(\Leftrightarrow\)\(-A+4\ge1-\frac{x}{2}+1-\frac{y}{2}+1-\frac{z}{2}+1-\frac{t}{2}=4-\frac{x+y+z+t}{2}=2\)
\(\Leftrightarrow\)\(-A+4\ge2\)
\(\Leftrightarrow\)\(A\le2\)