K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{x-1}{x-2}>1\)

\(\Leftrightarrow\frac{x-1}{x-2}-1>0\)

\(\Leftrightarrow\frac{x-1-x+2}{x-2}>0\)

\(\Leftrightarrow\frac{1}{x-2}>0\)

\(\Rightarrow x-2>0\)

\(\Leftrightarrow x>2\)

17 tháng 4 2019

(x-1)/(x-2) > 1 (ĐKXĐ: x khác 2)

<=> (x-1)/(x-2) -1 >0

<=> 1/(x-2) >0

<=> x-2 > 0

<=> x>2 (thỏa đkxđ)

Ta có x4-3x3-6x2+3x+1=0 

<=> (x4+x3-x2)-(43+4x2-4x)-(x2+x-1) =0

<=> (x2-4x-1)(x2+x-1) =0 

=> \(^{\orbr{\begin{cases}x^2-4x-1=0\\x^2+x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\pm\sqrt{5}\\x=\pm\frac{\sqrt{5}-1}{2}\end{cases}}}\)

31 tháng 10 2021

ko biết !

15 tháng 9 2018

\(\frac{x^2-5x+4}{x^2-2}=5\left(x-1\right)\)

\(\Rightarrow\frac{x^2-x-4x+4}{x^2-2}=5\left(x-1\right)\)

\(\Rightarrow\frac{x\left(x-1\right)-4\left(x-1\right)}{x^2-2}=5\left(x-1\right)\)

\(\Rightarrow\frac{\left(x-1\right)\left(x-4\right)}{x^2-2}=5\left(x-1\right)\)

Với x = 1

=> x - 1 = 0

=> \(\frac{0.\left(x-4\right)}{x^2-2}=5.0\)

=> 0 = 0 ( luôn đúng )

Với x khác 1

=> x - 1 khác 0

=> \(\frac{x-4}{x^2-2}=5\)( chia cả hai vế cho x - 1 )

=> \(x-4=5x^2-10\)

=> \(5x^2-x-6=0\)

=> \(5x^2+5x-6x-6=0\)

=> \(5x\left(x+1\right)-6\left(x+1\right)=0\)

=> \(\left(x+1\right)\left(5x-6\right)=0\)

=> \(\orbr{\begin{cases}x+1=0\\5x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{6}{5}\end{cases}}}\)

Vậy  \(x\in\left\{1;-1;\frac{6}{5}\right\}\)

15 tháng 4 2020

Điều kiện xác định x khác 1

\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)

\(\Leftrightarrow\frac{1.\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow x^2+x+1-3x^2=2x^2-2x\)

\(\Leftrightarrow x^2-3x^2-2x^2+x+2x+1=0\)

\(\Leftrightarrow-4x^2+2x+1=0\)

\(\Leftrightarrow\left(-2x-1\right)^2=0\)

\(\Leftrightarrow-2x-1=0\)

\(\Rightarrow x=-0,5\)(thỏa mãn)

16 tháng 4 2020

ok cám ơn bạn rất nhiều!

22 tháng 6 2018

Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)

25 tháng 7 2019

BPT\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9\right)\left(x-1\right)\left(x^2+x+1\right)\left(3-x\right)\left(x+1\right)\ge0\)        

       \(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(3-x\right)\left(x+1\right)\ge0\) VÌ \(\left(\left(x^2+3x+9\right).\left(x^2+x+1\right)>0với\forall x\right)\)

       \(\Leftrightarrow\left(x-3\right)^2.\left(1-x\right)\left(1+x\right)\ge0\)

       \(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge0\left(vì\left(x-3\right)^2\ge0voi\forall x\right)\)

       \(\Leftrightarrow-1\le x\le1\)

4 tháng 3 2022

x= 3m-3/m-2

Tại m =2 thì pt vô nghiệm 

Tại m khác 2 thì có nghiệm duy nhất vì đây là hàm bậc nhất

ĐẶT x-1=a  , x+3=b   (a,b cùng dấu)

\(PT\Leftrightarrow ab+2a\sqrt{\frac{b}{a}}=8\)

\(\Leftrightarrow2a\sqrt{\frac{b}{a}}=8-ab\)

\(\Leftrightarrow4a^2\frac{b}{a}=64-16ab+a^2b^2\)

\(\Leftrightarrow a^2b^2-20ab+64=0\)

\(\Leftrightarrow\left(ab-10\right)^2-36=0\)

\(\Leftrightarrow\left(ab-4\right)\left(ab-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}ab=4\\ab=16\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(x+3\right)=4\\\left(x-1\right)\left(x+3\right)=16\end{cases}}\)

Đến đây đơn giản rồi bn tự giải nhé

26 tháng 7 2019

ĐK:....\(\frac{x+3}{x-1}\ge0\)

<=> \(\left(x-1\right)\left(x+3\right)+2\sqrt{\left(x-1\right)\left(x+3\right)}+1=9\)

<=> \(\left(\sqrt{\left(x-1\right)\left(x+3\right)}+1\right)^2=9\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{\left(x-1\right)\left(x+3\right)}=2\\\sqrt{\left(x-1\right)\left(x+3\right)}=-4\left(loai\right)\end{cases}}\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=4\)

Em tự làm tiếp nhé