Cho 2 số nguyên dương a,b,c thỏa mãn: \(a+b+c=\frac{2a}{b+c}+\frac{2b}{a+c}+\frac{2c}{a+b}\)
Tính giá trị biểu thức P=\(a^{2012}+b^{2012}+c^{2012}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)
\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)
áp dụng bdt (a2+b2+c2)(x2+y2+z2)\(\ge\left(ax+by+cz\right)^2\) dấu '=" khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
(\(\left(\sqrt{2b+c}\right)^2+\left(\sqrt{2c+a}\right)^2+\left(\sqrt{2a+b}\right)^2\)). P\(\ge\left(a+b+c\right)^2\)
<=> P\(\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}=\frac{2018}{3}\)=> P min= \(\frac{2018}{3}\)
P min khi \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2b+a}\)<=> a=b=c= \(\frac{2018}{3}\)
Bìa này muốn làm cân 2 bước nha
Bước 1 ) CM BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
nó được CM như sau
áp dụng BĐT cô si ta đc
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3.\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9.\sqrt[3]{xyz.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9\)
dấu = xảy ra khi x=y=z
Bước 2 ) Theo CM bước 1 . áp dụng ta đc
\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}=\frac{ab}{9}.\frac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}.\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
CM tương tự ta đc
\(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{2c}\right)\)
\(\frac{ca}{c+3a+2b}\le\frac{ca}{9}\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{2a}\right)\)
cộng zế zới zế ta đc
\(A\le\frac{1}{9}\left(\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}+\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)\)
\(A\le\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}=\frac{6}{6}=1\)
=> MAx A=1 khi a=b=c=2
giỏi thì làm bài nÀY nèk
chứ mấy bác cứ đăng linh ta linh tinh lên online math
Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ
đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh