Cho \(a^b=b^c=c^a\left(a,b,c\in N\right)\)
Tính \(\left(\frac{a}{b}\right)^{2017}+\left(\frac{a}{b}\right)^{2018}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(M=\frac{3}{2}\cdot\frac{4}{3}\cdot\cdot\cdot\cdot\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{3.4...2019}{2.3...2018}=\frac{2019}{2}\)
b, c cùng 1 câu phải k
ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=B\)
\(\Rightarrow\frac{A}{B}=1\Rightarrow\left(\frac{A}{B}\right)^{2018}=1^{2018}=1\)
A,\(M=\frac{3}{2}\cdot\frac{4}{3}....\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{4\cdot3...2019}{2\cdot3...2018}=\frac{2019}{2}\)
NHA
HỌC TỐT
Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=t\)
\(\Rightarrow a=2016t,b=2017t,c=2018t\)
Ta có: \(4\left(a-b\right)\left(b-c\right)=4\left(2016t-2017t\right)\left(2017t-2018t\right)=4.\left(-t\right).\left(-t\right)=4t^2\)
\(\left(c-a\right)^2=\left(2018t-2016t\right)^2=\left(2t\right)^2=4t^2\)
Vậy \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a/2016 = b/2017 = c/2018 = (a-b) / (2016-2017) = (b-c) / (2017-2018) = (c-a) / (2018-1026)
= (a-b) / (-1) = (b-c) / ( -1) = (c-a) / 2
Vì (a-b) / (-1) = (b-c) / ( -1) = (c-a) / 2 nên (a-b) / (-1) . (b-c) / (-1) =[ (c-a) / 2 ]2
=> (a-b)(b-c) / (-1).(-1) = (c-a)2 / 22
=> (a-b)(b-c).1= (c-a)2 / 4
=> (a-b)(b-c) =(c-a)2 / 4
=> 4(a-b)(b-c)= (c-a)2
Không phải bằng đâu nhé mn