K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

Lời giải:

Đặt $\frac{x}{2}=t$ thì pt trở thành:

$2\cos 2t-5\sin t-2=0$

$\Leftrightarrow 2(1-2\sin ^2t)-5\sin t-2=0$

$\Leftrightarrow 4\sin ^2t+5\sin t=0$

$\Leftrightarrow \sin t(4\sin t+5)=0$

$\Rightarrow \sin t =0$ (chọn) hoặc $\sin t= \frac{-5}{4}< -1$ (loại)

$\Leftrightarrow t=k\pi$ với $k$ nguyên 

$\Leftrightarrow x=2k\pi$ với $k$ nguyên bất kỳ

5 tháng 10 2021

em cảm ơn ạ

 

NV
22 tháng 8 2020

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=\frac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=arcsin\left(\frac{4}{5}\right)+m2\pi\\x=\pi-arcsin\left(\frac{4}{5}\right)+n2\pi\end{matrix}\right.\)

Do \(-2\pi\le x\le3\pi\)

\(\Rightarrow\left\{{}\begin{matrix}-2\pi\le\frac{\pi}{2}+k\pi\le3\pi\\-2\pi\le arcsin\left(\frac{4}{5}\right)+m2\pi\le3\pi\\-2\pi\le\pi-arcsin\left(\frac{4}{5}\right)+n2\pi\le3\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\frac{5}{2}\le k\le\frac{5}{2}̸\\-1,15< m< 1,35\\-1,35< n< 1,14\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=\left\{-2;-1;0;1;2\right\}\\m=\left\{-1;0;1\right\}\\n=\left\{-1;0;1\right\}\end{matrix}\right.\)

Có 11 nghiệm

29 tháng 8 2018

Đáp án là A

30 tháng 4 2021

9:Chứng minh cho bốn đỉnh của tứ giác cách đều một điểm nào đó 

Chứng minh tứ giác có tổng 2 góc đối bằng 180° 

Chứng minh từ hai đỉnh cùng kề một cạnh cùng nhìn một cạnh dưới hai góc bằng nhau. Nếu một tứ giác có tổng số đo hai góc đối bằng thì tứ giác đó nội tiếp được trong một đường tròn.

30 tháng 4 2021

Mỗi câu 9 à

19 tháng 3 2023

Giúp vs m.n ơi mai mình kt òi

19 tháng 3 2023

a) Với m=0

=> pt <=> \(x^2+5x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

b) \(x^2+5x+3m=0\)

\(\Delta=25-12m\)

Để phương trình có 2 nghiệm phân biệt 

\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow25-12m>0\)

\(\Leftrightarrow m< \dfrac{25}{12}\)

2:

a: y1+y2=-(x1+x2)=-5

y1*y2=(-x1)(-x2)=x1x2=6

Phương trình cần tìm có dạng là;

x^2+5x+6=0

b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6

y1*y2=1/x1*1/x2=1/x1x2=1/6

Phương trình cần tìm là:

a^2-5/6a+1/6=0

NV
28 tháng 3 2023

a.

\(y'=4x^3+\dfrac{3}{x^2}+\dfrac{1}{2\sqrt{x}}+\dfrac{2}{x^3}\)

b.

\(y'=\dfrac{\left(4sinx-3\right)'.\left(7-5sinx\right)-\left(7-5sinx\right)'.\left(4sinx-3\right)}{\left(7-5sinx\right)^2}\)

\(=\dfrac{4cosx\left(7-5sinx\right)+5cosx\left(4sinx-3\right)}{\left(7-5sinx\right)^2}\)

\(=\dfrac{13cosx}{\left(7-5sinx\right)^2}\)

12 tháng 2 2019

viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn

10 tháng 12 2017