tính gt biểu thức
C=4x^2-2x-1 với|x|= 0.5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ:
\(\left\{{}\begin{matrix}x^2-9\ne0\\x+3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\ne-3\end{matrix}\right.\Leftrightarrow x\ne\pm3\)
b) \(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)
\(A=\dfrac{x+15}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(A=\dfrac{x+15-2x+6}{\left(x+3\right)\left(x-3\right)}\)
\(A=\dfrac{21-x}{\left(x+3\right)\left(x-3\right)}\)
c) Thay x = - 1 vào A ta có:
\(A=\dfrac{21-\left(-1\right)}{\left(-1+3\right)\left(-1-3\right)}=\dfrac{21+1}{2\cdot-4}=\dfrac{22}{-8}=-\dfrac{11}{4}\)
a) ĐKXĐ:
\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)
b) \(A=\dfrac{x^2-2x+1}{x^2-1}\)
\(A=\dfrac{x^2-2\cdot x\cdot1+1^2}{x^2-1^2}\)
\(A=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)
\(A=\dfrac{x-1}{x+1}\)
c) Thay x = 3 vào A ta có:
\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)
a) ĐKXĐ:
\(9x^2-y^2\ne0\Leftrightarrow\left(3x\right)^2-y^2\ne0\Leftrightarrow\left(3x-y\right)\left(3x+y\right)\ne0\)
\(\Leftrightarrow3x\ne\pm y\)
b) \(B=\dfrac{6x-2y}{9x^2-y^2}\)
\(B=\dfrac{2\cdot3x-2y}{\left(3x\right)^2-y^2}\)
\(B=\dfrac{2\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}\)
\(B=\dfrac{2}{3x+y}\)
Thay x = 1 và \(y=\dfrac{1}{2}\) và B ta có:
\(B=\dfrac{2}{3\cdot1+\dfrac{1}{2}}=\dfrac{2}{3+\dfrac{1}{2}}=\dfrac{2}{\dfrac{7}{2}}=\dfrac{4}{7}\)
Bài 3:
a) \(\sqrt{3x-2}=4\)
⇔\(\sqrt{3x-2}=\sqrt{4^2}\)
⇔\(3x-2=4^2=16\)
\(3x=16+2=18\)
\(x=18:3=6\)
Vậy \(x=6\)
b)\(\sqrt{4x^2+4x+1}-11=5\)
⇔\(\sqrt{\left(2x\right)^2+2\left(2x\right)\cdot1+1^2}-11=5\)
⇔\(\sqrt{\left(2x+1\right)^2}-11=5\)
TH1:
⇔\(\left(2x+1\right)-11=5\)
\(2x+1=5+11=16\)
\(2x=16-1=15\)
\(x=15:2=7,5\)
TH2:
⇔\(\left(2x+1\right)-11=-5\)
\(2x-1=-5+11=6\)
\(2x=6+1=7\)
\(x=7:2=3,5\)
Vậy \(x=\left\{7,5;3,5\right\}\)
(Câu này mình không chắc chắn lắm)
(Học sinh lớp 6 đang làm bài này)
Bài 4:
a: \(C=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}+x+\sqrt{x}}{\sqrt{x}}=\dfrac{2x}{\sqrt{x}}=2\sqrt{x}\)
b: C-6<0
=>C<6
=>\(2\sqrt{x}< 6\)
=>\(\sqrt{x}< 3\)
=>0<=x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< x< 9\\x\ne1\end{matrix}\right.\)
a: \(=\dfrac{2x^2+2x+3x+3}{x+1}-4x+5=2x+3-4x+5=-2x+8\)
=4+8
=12
b: \(=3x-2-\left(2x+5\right)\left(x-1\right)\)
\(=3x-2-2x^2+2x-5x+5\)
\(=-2x^2+3=-2\cdot6.25+3=-12.5+3=-9.5\)
a) \(x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\)
với mõi x ta luôn có \(\left(x-1\right)^2\ge0\)\(\Rightarrow\left(x-1\right)^2-2\ge2\)
Bt đạt GTNN là 2 tại x=1
b) \(4x^2+4x+5=\left(2x+1\right)^2+4\ge4\)
Bt đạt GTNN tlà 4 tại x = \(-\dfrac{1}{2}\)
c) \(2x-x^2-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\)
Bt đạt GTLN là -3 tại x=1
d) \(-x^2-4x=-\left(x^2+4x+4\right)+4=-\left(x+2\right)^2+4\le4\)
Bt đạt GTLN là 4 tại x= -2
đây chỉ là gợi ý nha bn
Tìm GTNN của các biểu thức:
A= x2 - 2x - 1
= x2 - 2.x.1 + 12 - 2
= (x-1)2 - 2
Vì (x-1)2 ≥ 0
=> (x-1)2 - 2 ≥ 0 - 2 (với mọi x)
=> (x-1)2 - 2 ≥ -2
Dấu = xảy ra khi: x-1 = 0 => x=1
Vậy GTNN của A = -2 khi x = 1
\(C=\left[{}\begin{matrix}4\cdot\dfrac{1}{4}-2\cdot\dfrac{1}{2}-1=-1\\4\cdot\dfrac{-1}{4}-2\cdot\dfrac{-1}{2}-1=-1\end{matrix}\right.\)