Bài 1 thực hiện phép tính
a) (2180x 5 + 2180x 17 + 2180 x 30 - 2181 ) x ( 2176 x 50 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2x\left(3x^2+1\right)=6x^3+2x\)
\(b,\left(2x^3-5x^2+6x\right):2=x^3-\dfrac{5}{2}x^2+3x\)
\(c,\left(x-3\right)\left(x+5\right)-x\left(x+2\right)=x^2+5x-3x-15-x^2-2x=-15\)
\(a,=2x^2-10x+x^2+x-6=3x^2-9x-6\\ b,=x^2+4x+4-x^2+8x-15=12x-11\\ c,=4x^2-12x+9-4x^2+x=-11x+9\)
\(=\left(x^2+2x+1\right)+\left(y^2-8y+16\right)=\left(x+1\right)^2+\left(y-4\right)^2\ge0\forall x,y\)
dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
Bài 1:
a) \(2x\left(x^2-5x+6\right)=2x^3-10x^2+12x\)
b) \(\left(7x^5+14x^2y^3-28x^3y^2\right):7x^2=x^3+2y^3-4xy^2\)
Bài 2:
\(x^2+y^2+2x-8y+17=\left(x^2+2x+1\right)+\left(y^2-8y+16\right)=\left(x+1\right)^2+\left(y-4\right)^2\ge0\forall x,y\)
a) \(\dfrac{12}{1+\sqrt{5}}+\dfrac{15}{\sqrt{5}}-\dfrac{\sqrt{20}-5}{2-\sqrt{5}}\)
=\(\dfrac{12\left(1-\sqrt{5}\right)}{-4}+\dfrac{15\sqrt{5}}{5}-\dfrac{\left(\sqrt{20}-5\right)\left(2+\sqrt{5}\right)}{-1}\)
=\(-3+3\sqrt{5}-\sqrt{5}+3\sqrt{5}+4\sqrt{5}+10-10-5\sqrt{5}\)
=\(5\sqrt{5}-3\)
b)\(\dfrac{2\sqrt{x}}{\sqrt{x}-1}-\dfrac{3x}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}}\)
=\(\dfrac{2x-3x+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
=\(\dfrac{-x+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(a,=4x^2+4x+1\\ b,=9-12y+4y^2\\ c,=\dfrac{x^2}{4}-xy+y^2\\ d,=\dfrac{25}{4}-5x+x^2\\ e,=4x^2+32xy+64y^2\\ f,=9x^2-30xy+25y^2\)
\(a)\left(x+3y\right)\left(x-2y\right)\\ =x^3-2xy+3xy-6y^2\\ =x^2+xy-6y^2\\ b)\left(2x-y\right)\left(y-5x\right)\\ = 2xy-10x^2-y^2+5xy\\ =7xy-10x^2-y^2\\ c)\left(2x-5y\right)\left(y^2-2xy\right)\\ =2xy^2-4x^2y-5y^3+10xy^2\\ =12xy^2-4x^2y-5y^2\\ d)\left(x-y\right)\left(x^2-xy-y^2\right)\\ =x^3-x^2y-xy^2-x^2y+xy^2+y^3\\ =x^3-2x^2y+y^3\)
1.
\(a,=6x^3-10x^2\\ b,=6x^2+9x\)
2.
\(Q=\left(x^2-10x+25\right)+1000=\left(x-5\right)^2+1000\\ Q=\left(1005-5\right)^2+1000=1000^2+1000=1001000\)