Cho tam giác ABC vuông tại A , trên nửa mặt phẳng bờ BC không chứa điểm A kẻ BD , CE vuông góc với BC và BD=BA,CE=CA.Gọi G là giao điểm của BE,CD.K,l là giao điểm của AD,AE với BC.Đường thẳng đi qua G song song với BC cắt AD,AE tại I,J.Gọi H là hình chiếu của G trên BC.Chứng minh rằng: tam giác HIJ cân tại H
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) Ta có: góc BAD+góc CAE+góc BAC=180 độ
Mà góc BAC=90 độ nên góc BAD+ góc CAE=90 độ (1)
Vì tam giác ACE vuông tại E nên góc ACE+góc CAE=90 độ(2)
Từ (1) và (2) => góc BAD= góc ACE
Xét tam giác ABD và tam giác ACE có:
góc ADB=góc AED=90 độ
AB=AC ( vì tam giác ABC vuông cân tại A)
góc BAD=góc ACE (cmt)
=> tam giác ABD=tam giác ACE (cạnh huyền-góc nhọn)
b) Theo câu a) Tam giác ABD=tam giác ACE
=> DA=EC và BD=AE
Mà DE=DA+AE nên DE=EC+BD
a) Tam giác ABDABD cân tại BB nên ˆBAK=180o−ˆABD2BAK^=180o−ABD^2
⇒ˆABK=45o−ˆB2⇒ˆAKC=ˆABC+ˆBAK=45o+ˆB2⇒ABK^=45o−B^2⇒AKC^=ABC^+BAK^=45o+B^2
ˆKAC=90o−(45o−ˆB2)=45o+ˆB2KAC^=90o−(45o−B^2)=45o+B^2
⇒ˆAKC=ˆKAC⇒ΔAKC⇒AKC^=KAC^⇒ΔAKC cân tại C
Tương tự ta cũng có ΔBALΔBAL cân tại B.
b) Áp dụng định lý ta - lét ta có :
IGHG=IGKC.BDHG.KCBD=DGDC.DCCG.ACAB=ABAC.ACAB=1IGHG=IGKC.BDHG.KCBD=DGDC.DCCG.ACAB=ABAC.ACAB=1
⇒IG=HG⇒⇒IG=HG⇒ tam giác IHGIHG vuông cân.
Chứng minh tương tự cũng có tam giác IGJIGJ vuông cân.
⇒ΔIHJ⇒ΔIHJ là tam giác vuông cân.
Hình gửi kèm
mình ghi nhanh quá mình ghi lộn b) \(\frac{IG}{HG}=\frac{IG}{HC}.\frac{BD}{HG}.\frac{KC}{BD}=\frac{DG}{DC}.\frac{DC}{CG}.\frac{AC}{AB}=\frac{AB}{AC}.\frac{AC}{AB}=1\)