K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=1+3+3^2+3^3+...+3^{2014}\)

\(\Rightarrow3A=3+3^2+3^3+3^4+...+3^{2015}\)

\(\Rightarrow2A=3^{2015}-1\)

Lại có \(3^{2015}-1=3^{2012}\cdot3^3-1=\left(3^4\right)^{503}\cdot27-1=81^{503}\cdot27-1=\left(...1\right)\cdot27-1=\left(...7\right)-1=\left(...6\right)\)

\(\Rightarrow A=\frac{\left(...6\right)}{2}=\left(...3\right)\)

Vậy A có chữ số tận cùng là 3

AH
Akai Haruma
Giáo viên
12 tháng 1 2023

Lời giải:

$M=3^{2017}-3^{2016}+3^{2015}-....+3-1$

$3M=3^{2018}-3^{2017}+3^{2016}-...+3^2-3$

$M+3M=3^{2018}-1$
$4M=3^{2018}-1$

$16M=4(3^{2018}-1)$

Ta thấy: $3^4=81\equiv 1\pmod {10}$

$\Rightarrow 3^{2018}=(3^4)^{504}.3^2\equiv 1^{504}.3^2\equiv 9\pmod {10}$

$\Rightarrow 16M=4(3^{2018}-1)\equiv 4(9-1)\equiv 32\equiv 2\pmod {10}$

Vậy $16M$ tận cùng là $2$

5 tháng 5 2017

chữ số tận cùng là số 0

6 tháng 2 2016

Vì tích có 2 thừa số -2 và - 5 => có tận cùng là 0

6 tháng 2 2016

cậu kia trả lời quá chuẩn

26 tháng 9 2020

      A=\(1+3+3^2+3^3+...+3^{119}\)

    3A=\(3+3^{^2}+3^3+3^4+...+3^{120}\)

3A-A=( \(3+3^{^2}+3^3+3^4+...+3^{120}\))-(\(1+3+3^2+3^3+...+3^{119}\))

    2A=\(3^{120}-1\)

     A=\(\frac{3^{120}-1}{2}\)

   TA CÓ:   \(3^{120}\)CÓ CHỮ SỐ TẬN CÙNG LÀ 1 => \(\frac{....1-1}{2}\)\(\frac{...0}{2}=0\)

VẬY, CHŨ SỐ TẬN CÙNG CỦA A LÀ 0