cho \(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ac\right)\left(a-abc\right)\) ; \(abc\ne0\) và\(a\ne b\)
Chứng minh rằng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ca\right)\left(a-abc\right)\)
\(\Leftrightarrow a^2b+ab^2c^2-a^3bc-b^2c=b^2a+a^2bc^2-ca^2-ab^3c\)
\(\Leftrightarrow a^2b-ab^2-b^2c+ca^2=a^2bc^2-ab^3c+a^3bc-ab^2c^2\)
\(\Leftrightarrow\left(a-b\right)\left(ab+bc+ca\right)=abc\left(a-b\right)\left(a+b+c\right)\)
\(\Leftrightarrow ab+bc+ca=abc\left(a+b+c\right)\Leftrightarrow a+b+c=\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(đpcm\right)\)
a)= ab (a + b) - bc [( a + b) - (a - c)] + ac (a - c)
= ab (a + b) - bc (a + b) + bc (a - c) +ac (a - c)
= b (a + b) (a - c) + c (a - c) (a + b)
= (a + b) (a - c) (b + c)
b) \(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left[\left(a^2-b^2\right)+\left(c^2-a^2\right)\right]+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a^2-b^2\right)\left[\left(a+b\right)-\left(b+c\right)\right]+\left(c^2-a^2\right)\left[\left(c+a\right)-\left(b+c\right)\right]\)
\(=\left(a-b\right)\left(a+b\right)\left(a-c\right)-\left(a-c\right)\left(a+c\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a-c\right)\left[\left(a+b\right)-\left(a+c\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)