Rút gọn biểu thức sau
a) M= /x/ + x
b) N= /x/ : x
giúp với ạ!! mk cảm ơn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) x(x-y)+y(x-y)
=(x-y)(x+y) (đặt nhân tử chung)
=x^2-y^2 (hằng đẳng thức số 3)
1. \(x\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(x+y\right)=x^2-y^2\)
\(2.x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^n+y.x^{n-1}-y.x^{n-1}-y^n=x^n-y^n\)
\(A=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}+1}\)
\(A=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\left(x\ge0;x\ne25\right)\\ A=\dfrac{15-\sqrt{x}+2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\\ A=\dfrac{5+\sqrt{x}}{\sqrt{x}+5}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}+1}\)
`4(x-6)-x^2 (2+3x)+x(5x-4)+3x^2 (x-1)`
`=4x-24-2x^2 -3x^3 +5x^2-4x+3x^3-3x^2`
`=-24`
\(4\left(x-6\right)-2x\left(2+3x\right)+x\left(5x-4\right)+3x2\left(x-1\right)\\ =4x-24-4x-6x^2+5x^2-4x+6x^2+6x\\ =2x+5x^2-24\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5.\left(x+1\right)}\)
\(A=\left(\frac{x^2+2x+1}{\left(x+1\right).\left(x-1\right)}-\frac{x^2-2x+1}{\left(x+1\right).\left(x-1\right)}\right):\frac{2x}{5.\left(x+1\right)}\)
\(A=\frac{x^2+2x+1-x+2x-1}{\left(x+1\right).\left(x-1\right)}\cdot\frac{5.\left(x+1\right)}{2x}\)
\(A=\frac{4x}{\left(x+1\right).\left(x-1\right)}\cdot\frac{5.\left(x+1\right)}{2x}=\frac{10}{x-1}\)
a: \(P=\dfrac{2x+4\sqrt{x}-x-6\sqrt{x}}{x-4}=\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
b: Thay x=1 vào P, ta được:
\(P=\dfrac{1}{1+2}=\dfrac{1}{3}\)
ĐKXĐ: \(x\ge0;x\ne4\)
\(A=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}-\dfrac{12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+4\sqrt{x}+4-3\sqrt{x}+6-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)
a) \(\left|x\right|+x\)
Vì \(\left|x\right|\ge0\) nên ta có 3TH:
TH1: \(x>0\)
\(\Rightarrow\left|x\right|+x=2x\)
TH2: \(x=0\)
\(\Rightarrow\left|x\right|+x=0\)
TH3: \(x< 0\)
\(\Rightarrow\left|x\right|+x=0\)
b) \(N=\left|x\right|:x\)
Vì \(\left|x\right|\ge0\) và \(x\ne0\) nên ta có 2TH:
TH1: \(x>0\)
\(\Rightarrow\left|x\right|:x=1\)
TH2: \(x< 0\)
\(\Rightarrow\left|x\right|:x=-1\)