Tìm x biết 1/3 + 1/6 +1/10 +....2/x(x+1) = 2003/2004
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2004}\)
\(\Leftrightarrow\)\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2004}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2004}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2004}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2003}{2004}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2003}{2004}\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{2004}:2\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{4008}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{2}-\frac{2003}{4008}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{4008}\)
\(\Leftrightarrow\)\(x+1=4008\)
\(\Leftrightarrow\)\(x=4007\)
Vậy \(x=4007\)
Chúc bạn học tốt ~
a) x+(x+1)+(x+2)+(x+3)+...+2003=2003
x+(x+1)+(x+2)+(x+3)+...+2003=2003
X+(x+1)+(x+2)+(x+3)+...+2002=0
( Vì ta thấy đây là tổng của một dãy số các số hạng liên tiếp nên day tren co so cuoi la 2002 va tong tat ca bang 0 vi 2003-2003=0 ma)
Goi so so hang cua day so tren la n(nkhac 0)
Suy ra ta co ((2002+x).n):2=0
suy ra (2002+x).n=0
Mà n khác 0
Suy ra 2002+x=0
x=0-2002
x=-2002
Vay x=-2002
Cậu b bạn làm tương tự nhé!
Neu to co lam sai thi ban thong cam nhe!
1: \(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2-\left(x-1\right)^x=0\)
=>\(\left(x-1\right)^x\cdot\left[\left(x-1\right)^2-1\right]=0\)
=>\(x\left(x-1-1\right)\cdot\left(x-1\right)^x=0\)
=>x(x-2)(x-1)^x=0
=>x=0;x=2;x=1
2: \(\Leftrightarrow\left(6-x\right)^{2003}\left(x-1\right)=0\)
=>6-x=0 hoặc x-1=0
=>x=6;x=1
3: =>(7x-11)^3=32*25+200=1000
=>7x-11=10
=>7x=21
=>x=3
4: =>x^2-1=-3 hoặc x^2-1=3
=>x^2=-2(loại) hoặc x^2=4
=>x=2 hoặc x=-2
Sửa đề\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2004}\)
=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2004}\)
=> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2003}{4008}\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2003}{4008}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{4008}\)
=> \(\frac{1}{x+1}=\frac{1}{4008}\)
=> x + 1 = 4008
=> x = 4007
Vậy x = 4007
Để \(\frac{4x+9}{6x+5}\)\(\in Z\)thì \(4x+9\)chia hết \(6x+5\)
\(\Rightarrow3.\left(4x+9\right)\)chia hết cho \(6x+5\)
\(\Rightarrow\)\(12x+27\)chia hết cho \(6x+5\)
\(\Rightarrow\)\(2.\left(6x+5\right)+17\)chia hết cho \(6x+5\)
\(\Rightarrow\)17 chia hết cho \(6x+5\)
\(\Rightarrow\)6x +5 thuộc Ư(17)
suy ra 6x+5 thuộc {+-1;+-17}
ĐẾN ĐÂY BẠN TỰ LẬP BẲNG TÌM X NHÉ
Vậy x thuộc{-1;2}
B)Tích đi mình làm tiếp cho
Có: 1/3+1/6+1/10+...+2/n(n+1)=2003/2004
=>1/2.[ 1/3+1/6+1/10+...+2/n(n+1)]=2003/2004.1/2
=>1/6+1/12+1/20+...+1/n.(n+1)=2003/2004.1/2
=>1/2.3+1/3.4+1/4.5+...+1/n.(n+1)=2003/2004.1/2
=>1/2-1/3+1/3-1/4+1/4-1/5+....+1/n-1/n+1=2003/2004.1/2
=>1/2-1/n+1=2003/4008
=>1/n+1=1/4008
=>n+1=4008
=>n=4007
Vậy n=4007
\(\frac{x+4}{2001}+\frac{x+3}{2002}=\frac{x+2}{2003}+\frac{x+1}{2004}\)
\(\Leftrightarrow\left(\frac{x+4}{2001}+1\right)+\left(\frac{x+3}{2002}+1\right)=\left(\frac{x+2}{2003}+1\right)+\left(\frac{x+1}{2004}+1\right)\)
\(\Leftrightarrow\frac{x+2005}{2001}+\frac{x+2005}{2002}=\frac{x+2005}{2003}+\frac{x+2005}{2004}\)
\(\Leftrightarrow\frac{x+2005}{2001}+\frac{x+2005}{2002}-\frac{x+2005}{2003}-\frac{x+2005}{2004}=0\)
\(\Leftrightarrow\left(x+2005\right).\left(\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}+\frac{1}{2004}\right)=0\)
Vì \(\left(\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}+\frac{1}{2004}\right)\ne0\)
\(\Rightarrow x+2004=0\)
\(\Rightarrow x=0-2004=-2004\)
b phép cộng có tính chất giao hoán
x + ( x+ 1) +..........................+ 2003+2004 = 2004
x+(x+1) +...............................+2003 = 0 (1)
Gọi số số hạng của vế trái là a ( vế trái là phần gạch chân ) ( a thuộc N sao )
Ta có : (1) = [ ( x +2003). a ] :2 =0
=[ ( x+ 2003).a] =0
mà a thuộc N sao
nên x + 2003=0
x = -2003
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2004}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2004}{2005}\)
=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2004}{2005}\)
=> \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2004}{2005}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2004}{2005}:2=\frac{1002}{2005}\)
=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{1002}{2005}=\frac{1}{4010}\)
=> \(x+1=4010\)
=> \(x=4010-1\)
=> \(x=4009\)