Giải phương trình nghiệm nguyên: 2x + 5y +3xy = 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x+13y=156\) (1)
.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)
Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)
Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)
b)Biến đổi phương trình thành: \(2xy-4x=7-y\)
\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )
Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên
hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!
c) \(3xy+x-y=1\)
\(\Leftrightarrow9xy+3x-3y=3\)
\(\Leftrightarrow9xy+3x-3y-1=2\)
\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)
\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)
\(8x^2-3xy-5y=25\)
\(\Leftrightarrow8x^2-25=3xy+5y\Leftrightarrow8x^2-25=y\left(3x+5\right)\)
\(\Leftrightarrow y=\frac{8x^2-25}{3x+5}\)\(\Rightarrow9y=\frac{72x^2-225}{3x+5}=24x-40-\frac{25}{3x+5}\)
\(\Rightarrow3x+5\inƯ\left(25\right)=\pm1;\pm5;\pm25\)
Đến đây bạn tự suy ra x rồi thay vào biểu thức trên để suy ra y là ok.
a) \(x^2-3xy+3y^2=3y\)
Rõ ràng \(x⋮y\) nên đặt \(x=ky\left(k\inℤ\right)\). Pt trở thành:
\(k^2y^2-3ky^2+3y^2=3y\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\k^2y-3ky+3y=3\end{matrix}\right.\).
Khi \(y=0\) \(\Rightarrow x=0\).
Khi \(k^2y-3ky+3y=3\)
\(\Leftrightarrow y\left(k^2-3k+3\right)=3\)
Ta lập bảng giá trị:
\(y\) | 1 | 3 | -1 | -3 |
\(k^2-3k+3\) | 3 | 1 | -3 | -1 |
\(k\) | 0 hoặc 3 | 1 hoặc 2 | vô nghiệm | vô nghiệm |
\(x\) | 0 (loại) hoặc 3 (nhận) | 3 (nhận) hoặc 6 (nhận) |
Vậy pt đã cho có các nghiệm \(\left(0;0\right);\left(3;1\right);\left(3;3\right);\left(6;3\right)\)
b) \(x^2-2xy+5y^2=y+1\)
\(\Leftrightarrow x^2-2yx+5y^2-y-1=0\)
\(\Delta'=\left(-y\right)^2-\left(5y^2-y-1\right)\) \(=-4y^2+y+1\)
Để pt đã cho có nghiệm thì \(-4y^2+y+1\ge0\), giải bpt thu được \(\dfrac{1-\sqrt{17}}{8}\le y\le\dfrac{1+\sqrt{17}}{8}\). Mà lại có \(-1< \dfrac{1-\sqrt{17}}{8}< 0< \dfrac{1+\sqrt{17}}{8}< 1\) nên suy ra \(y=0\). Từ đó tìm được \(x=\pm1\). Vậy pt đã cho có các nghiệm \(\left(1;0\right);\left(-1;0\right)\)
bn tham khảo câu này nha https://h.vn/hoi-dap/question/79049.html
chúc bn học tốt.tk mk nha
x2 + 2y2 + 3xy + 3x + 5y = 15
Û (x +y +z )(x + 2y +1)
đúng không???
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
\(\Leftrightarrow6x+15y+9xy=24\)
\(\Leftrightarrow3x\left(2+3y\right)+5\left(2+3y\right)=34\)
\(\Leftrightarrow\left(3x+5\right)\left(3y+2\right)=34=1.34=2.17=17.2=34.1=\left(-1\right)\left(-34\right)=\left(-2\right)\left(-17\right)=\left(-17\right)\left(-2\right)=\left(-34\right)\left(-1\right)\)
Đến đây bạn tự giải.
\(\Leftrightarrow6x+15y+9xy=24\)
\(\Leftrightarrow9xy+6x+15y+10=24+10\)
\(\Leftrightarrow3x\left(3y+2\right)+5\left(3y+2\right)=34\)
\(\Leftrightarrow\left(3x+5\right)\left(3y+2\right)=34\)
Vì \(x,y\in Z\) và \(3y+2\) chia 3 dư 2nên ta có bảng kết quả :
-1
Vậy có 4 cặp số nguyên (x,y) thỏa mãn yêu cầu bài toán là:
(4;0) ; (-1;5) ; (-2;-12) ; (-13;-1).