K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2019

\(\left\{{}\begin{matrix}ax+x+y=4\\ax+y=2a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}ax+y+x=4\\ax+y=2a\end{matrix}\right.\)

Thế pt dưới vào pt trên ta có:

\(2a+x=4\Rightarrow x=4-2a\)

Thế vào pt dưới: \(y=2a-ax=2a-a\left(4-2a\right)=2a^2-2a\)

\(\Rightarrow\) Hệ luôn có cặp nghiệm duy nhất

Lại có \(x+y=4-2a+2a^2-2a=2a^2-4a+4\)

\(=2a^2-4a+2+2=2\left(a-1\right)^2+2\ge2\) \(\forall a\) (đpcm)

11 tháng 1 2021

Từ pt (1) ta có: y=ax-2 thế vào pt (2) ta được:

          \(x+a\left(ax-2\right)=3\)

\(\Leftrightarrow x+a^2x-2a=3\)

\(\Leftrightarrow\left(a^2+1\right)x=2a+3\)

\(\Leftrightarrow x=\dfrac{2a+3}{a^2+1}\) (Vì \(a^2+1\ne0\))

\(\Rightarrow y=a\cdot\dfrac{2a+3}{a^2+1}-2=\dfrac{3a-2}{a^2+1}\)

Vậy với mọi a hệ có nghiệm duy nhất là \(\left(x;y\right)=\left(\dfrac{2a+3}{a^2+1};\dfrac{3a-2}{a^2+1}\right)\) 

6 tháng 1 2021

\(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9-my\\m\left(9-my\right)-3y=4\end{matrix}\right.\)(*)

(*) <=> \(9m-m^2y-3y=4\)

<=> \(-y\left(m^2+3\right)=4-9m\) 

Vì \(m^2+3\ge3\) >0 với mọi m

=> m2 + 3 khác 0

=> luôn có nghiệm y = \(\dfrac{9m-4}{m^2+3}\) với mọi m

b) Khi đó x= \(9-m.\dfrac{9m-4}{m^2+3}=\dfrac{9m^2+27-9m^2+4m}{m^2+3}=\dfrac{4m^2+27}{m^2+3}\)

Để \(x-3y=\dfrac{28}{m^2+3}-3\)

=> \(4m+27-27m+12=28-3m^2+9\)

<=> \(3m^2-3m-20m+20=0\)

<=> \(3m\left(m-1\right)-20\left(m-1\right)=0\) 

<=> \(\left(3m-20\right)\left(m-1\right)=0\)

<=> \(\left[{}\begin{matrix}m=\dfrac{20}{3}\\m=1\end{matrix}\right.\) 

9 tháng 3 2022

Thay vào ta được 

\(\left\{{}\begin{matrix}a=2a-1\\-1=a^2-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a^2-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)

 

9 tháng 3 2022

Nguyễn Huy Tú ( ✎﹏IDΣΛ... CTV, bn ơi cho mình hỏi tí:

Nếu mình làm như này có đúng không bạn:

\(\left\{{}\begin{matrix}a-1=0\\a^2-1=0\end{matrix}\right.\Leftrightarrow a-1=a^2-1\) rồi giải ra tìm được a=0 hoặc a=1 có đúng không bạn??

14 tháng 2 2020
  • Nguyễn Lê Phước Thịnh20GP
  • Phạm Thị Diệu Huyền16GP
  • Vũ Minh Tuấn15GP
  • Phạm Lan Hương13GP
  • Trần Thanh Phương10GP
  • Trên con đường thành công không có dấu chân của kẻ lười biếng8GP
  • Phạm Minh Quang7GP
  • Chiyuki Fujito6GP
  • hellokoko6GP
  • Nguyễn Ngọc Lộc

Xin lỗi bạn, mình mới học lớp 7 thôi!!

AH
Akai Haruma
Giáo viên
9 tháng 3 2018

Lời giải:

Câu 2:

Ta có: \(\left\{\begin{matrix} (a+1)x+y=4(1)\\ ax+y=2a(2)\end{matrix}\right.\)

Lấy \((1)-(2)\Rightarrow x=4-2a\)

\(\Rightarrow y=2a-ax=2a-a(4-2a)=2a^2-2a\)

Ta thấy ứng với mỗi giá trị của $a$ ta thu được một giá trị tương ứng duy nhất của \((x,y)=(4-2a, 2a^2-2a)\)

nên hệ luôn có nghiệm duy nhất.

Có: \(x+y=4-2a+2a^2-2a=2a^2-4a+4=2(a-1)^2+2\)

Ta thấy \((a-1)^2\geq 0\forall a\in\mathbb{R}\Rightarrow x+y=2(a-1)^2+2\geq 2\)

Ta có đpcm.

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r