Cho x+y=2. CM \(\frac{2+xy}{2-xy}\le3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng hệ quả bđt côsi xy≤ \(\left(\frac{x+y}{2}\right)^2\) =\(\left(\frac{2}{2}\right)^2\)=1
⇒\(\frac{2+xy}{2-xy}\) ≤\(\frac{2+1}{2-1}\) = 3
dấu =xảy ra khi x=y=1
\(\frac{2+xy}{2-xy}\le3\Rightarrow2+xy\le6-3xy\)
\(\Rightarrow4xy\le4\)\(\Rightarrow4\left(xy-1\right)\le0\)(1)
Ta lại có x+y=2=>x=2-y=>xy=(2-y)y=> xy-1=-(y-1)2\(\le\)0
=> (1) đúng
=> đpcm
Sửa đề:
\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\left(1\right)\\4x+\frac{24\left(x^3+y^3\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}\ge12\left(2\right)\end{cases}}\)
Điều kiện: \(xy\ge0\)
Xét \(x,y\le0\)
\(4x+\frac{24\left(x^3+y^3\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}\ge0\)(loại)
Xét \(x,y\ge0\)
\(\left(2\right)-\left(1\right)\Leftrightarrow\left(x+y\right)+\frac{24\left(x+y\right)\left(x^2-xy+y^2\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}-10\sqrt{xy}\ge0\)
Ta có:
\(VT\le\left(x+y\right)+8\left(x+y\right)-4\left(x+y\right)-5\left(x+y\right)=0\)
\(\Rightarrow x=y\)
Làm tiếp
Câu trên sai rồi nha đọc cái này nè.
\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\left(1\right)\\x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\le3\left(2\right)\end{cases}}\)
Điều kiện: \(xy\ge0\)
Xét \(x,y\le0\)
\(x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\le3\)(đúng)
Xét \(x,y\ge0\)
Ta có:
\(x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\ge x+\frac{4\left(x^3+y^3\right)}{x^2+y^2}-\sqrt{2\left(x^2+y^2\right)}\)
\(\ge x+2\sqrt{2\left(x^2+y^2\right)}-\sqrt{2\left(x^2+y^2\right)}=x+\sqrt{2\left(x^2+y^2\right)}\ge x+x+y=2x+y\)
\(\Rightarrow3\ge2x+y\left(3\right)\)
Ta có:
\(3x+10\sqrt{xy}-y=12\)
\(VT\le3x+5\left(x+y\right)-y=8x+4y\)
\(\Rightarrow12\le8x+4y\)
\(\Leftrightarrow3\le2x+y\left(4\right)\)
Từ (3) và (4) \(\Rightarrow x=y\)
Làm nốt
(x-y)^2>=0 <=> (x+y)^2-4xy>=0 <=> (x+y)^2=2^2=4>=4xy <=> 2>=2xy <=> 2-xy>=xy
suy ra 2+xy/2-xy=1+ 2xy/2-xy<=1+ 2(2-xy)/2-xy= 1+2=3
dấu '=' xảy ra khi x=y=2/2=1