K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

#) Giải

Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0) 
=> z(x + y) = xy 
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1 
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1 
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1 
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1 
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1 
Vậy không tồn tại x, y, z thỏa đk bài toán 

~ Hok tốt ~

kham khảo ở đây nha

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

vào thống kê hỏi đáp của mình nhấn zô chữ xanh trong câu trả lời này 

hc tốt ~:B~

1 tháng 5 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

26 tháng 7

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ

 

1 tháng 12 2015

A= x+y-y/x+y + y+z-z/y+z + z+x-x/x+z

A=3 - ( x/x+z + y/x+y + z/y+z)

Mà:x/x+z>x/x+y+z,x/y+z>y/x+y+z;z/x+z>z/x+y+z

suy ra :A<2     (1)

Mặt khác A=x/x+y + y/y+z + z/x+z

Mà x/x+y>x/x+y+z;y/y+z>y/x+y+z;z/x+z>z/x+y+z

suy ra A=1        (2)

Từ (1) và (2) suy ra 1<A<2 suy ra A ko phải là số nguyên

23 tháng 11 2016

Ta có: x,y,z \(\in\)Z ,nên

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow A>1\)

\(B=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{y}{x+y+z}+\frac{z}{x+y+z}+\frac{x}{x+y+z}=1\)

\(\Rightarrow B>1\)

Ta có: \(A+B=\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)+\left(\frac{z}{z+x}+\frac{x}{z+x}\right)=3\) và B > 1

Do đó A < 2.Vậy 1 < A < 2

=> A có giá trị là 1 số không thuộc tập hợp số nguyên

20 tháng 3 2018

a) Ta có: \(|\frac{1}{2}x-3y+1|\ge0\)    và   \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\)

=> \(|\frac{1}{2}x-3y+1|=-\left(x-1\right)^2=0\)

=> x-1=0

=> x=1

\(|\frac{1}{2}x-3y+1|=0\)

=> \(\frac{1}{2}.1-3y+1=0\)

=> \(\frac{1}{2}-3y=-1\)

=> \(3y=\frac{1}{2}-\left(-1\right)\)

=>\(3y=\frac{1}{2}+1=\frac{3}{2}\)

=> \(y=\frac{3}{2}:3=\frac{3}{2}.\frac{1}{3}=\frac{1}{2}\)

b) Có: \(x^2\le y;y^2\le z;z\le x\)

=> \(x^4\le y^2\) và \(y^2\le x\)

=> \(x^4\le x\)

=> \(x^4=x\)

=> \(x\in\left\{0;1\right\}\)

Có: \(x^4\le y^2\)\(y^2\le z\)và \(z\le x\)

=> \(x^4\le z\le x\)

Mà \(x^4=x\)

=> \(x^4=x=z\)

=> \(z\in\left\{0;1\right\}\)

Có: \(x^4\le y^2\)và \(y^2\le z\)

=> \(x^4\le y^2\le z\)

Mà \(x^4=x=z\)

=> \(x^4=y^2\)

=> \(y^2\in\left\{0;1\right\}\)

=> \(y\in\left\{0;1\right\}\)

c)=> \(z=\frac{8-x}{3}\)và \(y=\frac{9-2}{2}\)

=> \(x+y+z=x+\frac{9-x}{2}+\frac{8-x}{3}=\frac{6x}{6}+\frac{27-3x}{6}+\frac{16-2x}{6}=\frac{6x+27-3x+16-2x}{6}\)

\(=\frac{x+43}{6}\)

..........Chỗ này?! Có gì đó sai sai.........

Mình nghĩ là \(x;y;z\in N\)thì mới đúng, chứ không âm thì nó có thể làm số thập phân...........Bạn xem lại cái đề đi

d) => \(a^2bc=-4;ab^2c=2;abc^2=-2\)

=> \(ab^2c+abc^2=2+\left(-2\right)=0\)

=> \(abc\left(b+c\right)=0\)

Mà a;b;c là 3 số khác 0

=> \(abc\ne0\)

=> \(b+c=0\)

=> \(b=-c\)

\(a^2bc+ab^2c-abc^2=-4+2-\left(-2\right)=0\)

=> \(abc\left(a+b-c\right)=0\)

\(abc\ne0\)

=> \(a+b-c=0\)

\(a^2bc-abc^2=-4-\left(-2\right)=-2\)

=> \(abc\left(a-c\right)=-2\)

Mà \(abc\ne0\)

=>\(a-c=-2\)

Có \(a+b-c=0\)

=> \(\left(a-c\right)+b=0\)

=> \(-2+b=0\)

=> \(b=2\)

 \(b=-c=2\)=> \(c=-2\)

=> \(a-\left(-2\right)=-2\)

=> \(a+2=-2\)

=> \(a=-2-2=-4\).....................Mình cũng thấy cái này lạ lạ à nha....... Bạn mò thử đi, chắc ra  -__-

Mỏi tay quáááá

19 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Do đó : 

\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)

\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)

\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)

Suy ra : 

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(P=8\)

Đề hơi sai