Cho ΔABC cân tại A. Trên cạnh đáy BC lấy hai điểm D và E sao cho BD = CE < \(\frac{BC}{2}\)
a. Chứng minh ΔABD = ΔACE
b. Kẻ DH ⊥ AB tại H, EK ⊥ AC tại K. Chứng minh DH = EK
c.Gọi M là một điểm nằm giữa D và E . Chứng inh AM + MB > AD+DH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tam giác abc có a+b+c=180'
hay 80+b+c=180
b+c=100
mà b=c(tam giác abc cân tại a)
=> b=c=50
b)Xét tam giác abd và aec có
ab=ac(gt)
góc b=góc c(gt)
bd=ec(gt)
do đó,abd=ace (c-g-c)
=> ad=ae (2 cạnh tương ứng)
=>tam giác ade cân tại a
a, Ta có : \(\Delta\)ABC cân tại A (gt)
\(\Rightarrow\)Góc B = góc \(C_1\)
Mà góc \(C_1=C_2\)(đối đỉnh)
\(\Rightarrow\)Góc B = góc \(C_2\)
Xét \(\Delta BDH\)\(\perp H\)(DH\(\perp\)BC) và \(\Delta CEK\perp K\)(EK \(\perp\)BC) có :
BD=CE (gt)
Góc B = góc C\(_2\)(cmt)
\(\Rightarrow\Delta BDH=\Delta CEK\)(ch-gn)
\(\Rightarrow DH=EK\)( 2 cạnh tg ứng)
Vậy...
b, Ta có : DH và EK cùng vuông góc vs BC (gt)
\(\Rightarrow\)DH \(//\)EK (Quan hệ từ vuông góc đến song song)
\(\Rightarrow\)Góc HDI = góc IEC ( 2 góc so le trong )
Xét \(\Delta HDI\perp H\left(DH\perp BC\right)\)và \(\Delta KEI\perp K\left(EK\perp BC\right)\)có :
DH=CE (\(\Delta BEH=\Delta CEK\))
Góc HDI = góc IEC (cmt)
\(\Rightarrow\)\(\Delta HDI=\Delta KEI\)(cgv-gnk)
\(\Rightarrow DI=EI\)( 2 cạnh tg ứng )
Mà D,I,E thẳng hàng ( DE và BC cắt nhau tại I )
\(\Rightarrow\)I là trung điểm của BC
Vậy...
Chúc bn hok tốt
a: Xét ΔDHB vuông tại H và ΔEKC vuông tại K có
BD=CE
góc DBH=góc ECK
=>ΔDHB=ΔEKC
=>BH=CK
b: Tham khảo:
a: Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc B=góc C
=>ΔBHD=ΔCKE
=>HD=EK
b: Xét ΔAHD vuông tại H và ΔAKE vuông tại K có
AH=AK
HD=EK
=>ΔAHD=ΔAKE
=>AD=AE
Sorry, bạn tự vẽ hình nha!
a.
Tam giác ABC cân tại A có:
\(B=C=\frac{180-A}{2}=\frac{180-80}{2}=\frac{100}{2}=50\)
b.
Xét tam giác ABD và tam giác ACE có:
AB = AC (tam giác ABC cân tại A)
B = C (tam giác ABC cân tại A)
BD = CE (gt)
=> Tam giác ABD = Tam giác ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE cân tại A
c.
Xét tam giác HAD vuông tại H và tam giác KAE vuông tại K có:
AD = AE (tam giác ADE cân tại A)
A1 = A2 (tam giác ABD = tam giác ACE)
=> Tam giác HAD = Tam giác KAE (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
a) Xét ∆ADB và ∆AEC có:
AB=AC (gt)
góc ABD= góc ACE (gt)
BD=CE(gt)
=>∆ADB=∆AEC(c.g.c0
=>AD=AC (2 cạnh tương ứng)
=>∆ADE là ∆cân tại A
b)Xét ∆BHD và ∆CKE có:
góc BHD=góc EHC=90
BD=CE(gt)
góc B=góc C(gt)
=>∆BHD=∆CKE(cạnh huyền góc nhọn)
=>DH=EK(2 cạnh tương ứng)(đpcm)
c)∆BHD=∆CKE(cmt) =>góc HDB =góc KEC (2cạnh tương ứng)
mà ∠HDB=∠EDO( đối đỉnh), ∠KEC=∠DEO(đối đỉnh)
=>∠EDO=∠DEO =>∆ODE cân tại O (đpcm)