K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

Có thấy ẩn gì đâu bạn

9 tháng 4 2019

ko có ẩn ak anh lớp 8

NV
15 tháng 4 2019

Đặt \(\sqrt{6x-9}=a\ge0\Rightarrow x=\frac{a^2+9}{6}\) pt trở thành:

\(\sqrt{\frac{a^2+9}{6}+a}+\sqrt{\frac{a^2+9}{6}-4a}=\sqrt{6}\)

\(\Leftrightarrow\sqrt{a^2+6a+9}+\sqrt{a^2-24a+9}=6\)

\(\Leftrightarrow a+3+\sqrt{a^2-24a+9}=6\)

\(\Leftrightarrow\sqrt{a^2-24a+9}=3-a\) (\(a\le3\))

\(\Leftrightarrow a^2-24a+9=a^2-6a+9\)

\(\Rightarrow a=0\Rightarrow\sqrt{6x-9}=0\Rightarrow x=\frac{3}{2}\)

Do ban đầu ko đặt ĐKXĐ nên phải thay nghiệm vào để thử, thấy đúng, vậy pt có nghiệm duy nhất \(x=\frac{3}{2}\)

24 tháng 11 2021

\(4\sqrt{2x}+21\sqrt{2x}=9-5\sqrt{2x}\)

\(30\sqrt{2x}=9\)

\(\sqrt{2x}=\dfrac{3}{10}\)

\(x=0.045\)

24 tháng 11 2021

2√8x + 7√18x = 9 - √50x    Đk x >= 0

(=) 4√2x + 21√2x + 5√2x = 9

(=) 30 √2x = 9 

(=) √2x = 9/30

(=) 2x =9/100

(=) x = 9/200=0,045

NV
8 tháng 4 2021

a.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
8 tháng 4 2021

b. ĐKXĐ: ...

Biến đổi pt đầu:

\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2b^2-b^4=b-a\)

\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)

Thế vào pt dưới:

\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)

\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)

\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow...\)

28 tháng 9 2021

\(\sqrt{x+6-4\sqrt{x+2}}-\sqrt{9-4\sqrt{5}}=0\left(đk:x\ge-2\right)\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+2}-2\right)^2}=\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(\Leftrightarrow\left|\sqrt{x+2}-2\right|=\left|\sqrt{5}-2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}-2=\sqrt{5}-2\\\sqrt{x+2}-2=2-\sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=5\\x+2=21-8\sqrt{5}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=19-8\sqrt{5}\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{3;19-8\sqrt{5}\right\}\)

10 tháng 5 2016

Đặt a=7x+7;b=7x-6 ta có hpt:

\(\begin{cases}a+b+2ab=-a-b+182\\a-b=13\end{cases}\Leftrightarrow\begin{cases}2a+2b+2ab=182\\a=13+b\end{cases}\)

Giải

28 tháng 11 2021

Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé

 

ĐKXĐ: \(\left\{{}\begin{matrix}x-7>=0\\9-x>=0\end{matrix}\right.\)

=>7<=x<=9

\(\sqrt{x-7}+\sqrt{9-x}=3x^2-48x+194\)

=>\(\sqrt{x-7}-1+\sqrt{9-x}-1=3x^2-48x+192\)

=>\(\dfrac{x-7-1}{\sqrt{x-7}+1}+\dfrac{9-x-1}{\sqrt{9-x}+1}=3\left(x^2-16x+64\right)\)

=>\(\dfrac{x-8}{\sqrt{x-7}+1}-\dfrac{x-8}{\sqrt{9-x}+1}-3\left(x-8\right)^2=0\)

=>\(\left(x-8\right)\left(\dfrac{1}{\sqrt{x-7}+1}-\dfrac{1}{\sqrt{9-x}+1}-3x+24\right)=0\)

=>x-8=0

=>x=8(nhận)

6 tháng 11 2023

Cảm ơn!!!yeu

4 tháng 9 2023

\(\sqrt{4x^2}=3\left(ĐK:4x^2\ge0\forall x\in R\right)\\ \Leftrightarrow\sqrt{\left(2x\right)^2}=3\\ \Leftrightarrow\left|2x\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}2x=-3\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(tm\right)\\x=\dfrac{3}{2}\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{3}{2};\dfrac{3}{2}\right\}\)

\(\sqrt{x^2-6x+9}=2\\ \Leftrightarrow\sqrt{\left(x-3\right)^2}=2\left(ĐK:\left(x-3\right)^2\ge0\forall x\in R\right)\\ \Leftrightarrow\left|x-3\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2+3\\x=-2-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=-5\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left(\pm5\right)\)

\(\sqrt{\left(2x-3\right)^2}=6\left(ĐK:\left(2x-3\right)^2\ge0\forall x\in R\right)\\ \Leftrightarrow\left|2x-3\right|=6\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=3+6\\2x=-6+3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4,5\left(tm\right)\\x=-1,5\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{4,5;-1,5\right\}\)

\(\sqrt{25x^2}=100\\ \sqrt{\left(5x\right)^2}=100\left(ĐK:\left(5x\right)^2\ge0\forall x\in R\right)\\\Leftrightarrow \left|5x\right|=100\\ \Leftrightarrow\left[{}\begin{matrix}5x=100\\5x=-100\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=20\left(tm\right)\\x=-20\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{\pm20\right\}\)

15 tháng 9 2023

Phần thứ hai sai mà chẳng ai biết :D

17 tháng 8 2023

\(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\left(x\ge1\right)\)

\(< =>5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)

\(< =>30\sqrt{x-1}-15\sqrt{x-1}=36+6\sqrt{x-1}\)

\(< =>9\sqrt{x-1}=36\\ < =>\sqrt{x-1}=4\\ < =>x-1=16\\ < =>x=17\left(tm\right)\)

 

\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{1}{3}\sqrt{x-1}-\sqrt{x-1}=6\)

=>\(1.5\cdot\sqrt{x-1}=6\)

=>\(\sqrt{x-1}=4\)

=>x-1=16

=>x=17