Dùng Hẳng Đẳng Thức, Phân Tích Đa Thức Thành Nhân Tử Chung
a) x\(^2\)-4y\(^2\) d) x\(^2\)-10xy+25y\(^2\)
b) x\(^2\)-9y\(^2\) e) 9x\(^2\)- 6x+1
c) (2x-1)\(^2\)- 4y\(^2\) f) 25x\(^2\)+20x+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(x^3+2x^2-6x-27=\left(x-3\right)\left(x^2+5x+9\right)\)
2. \(9x^2+6x-4y^2-4y=\left(9x^2-4y^2\right)+\left(6x-4y\right)\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)=\left(3x-2y\right)\left(3x+2y+2\right)\)
3. \(12x^3+4x^2-27x-9=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(x^2-\dfrac{9}{4}\right)=\left(x+\dfrac{1}{3}\right)\left(x+\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)\)
1) Ta có: \(x^3+2x^2-6x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
2: Ta có: \(9x^2+6x-4y^2-4y\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(3x+2y+2\right)\)
a)\(6x-9-x^2\)
\(=-\left(x^2+6x+9\right)\)
\(=-\left(x+3\right)^2\)
b)\(x^2+4y^2+4xy\)
\(=\left(x+2y\right)^2\)
c)\(x^2+8x+16\)
\(=\left(x+4\right)^2\)
d)\(9x^2-12xy+4y^2\)
\(=\left(3x-2y\right)^2\)
e)\(-25x^2y^2+10xy-1\)
\(=-\left(25x^2y^2-10xy+1\right)\)
\(=-\left(5xy-1\right)^2\)
f)\(4x^2-4x+1\)
\(=\left(2x-1\right)^2\)
j)\(x^2+6x+9\)
\(=\left(x+3\right)^2\)
h)\(9x^2-6x+1\)
\(=\left(3x-1\right)^2\)
#H
a, 6x - 9 - x2 = - x2 + 6x - 9 = - (x2 - 6x + 9) = - (x - 3)2
b, x2 + 4y2 + 4xy = x2 + 2. x . 2y + (2y)2 = (x + 2y)2
c, x2 + 8x + 16 = x2 + 2 . x . 4 + 42 = (x + 4)2
d, 9x2 - 12xy + 4y2 = (3x)2 - 2 . 3x . 2y + (2y)2 = (3x - 2y)2
e, - 25x2y2 + 10xy - 1 = - (25x2y2 - 10xy + 1) = - [(5xy)2 - 2 . 5xy + 1] = - (5xy - 1)2
f, 4x2 - 4x + 1 = (2x)2 - 2 . 2x + 1 = (2x - 1)2
j, x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
h, 9x2 - 6x + 1 = (3x)2 - 2 . 3x + 1 = (3x - 1)2
Biểu thức này không phân tích được thành nhân tử nhé. Bạn xem xem có viết sai đề không.
Câu này trong đề ôn thi giữa kỳ 1 lớp 8 của trường THCS Đặng Công Bỉnh, TP.HCM.
không hiểu do nhầm đề hay không?
a) x^2 - 5xy +4y^2= x^2 -xy -4xy+4y^2= (x^2-xy) - (4xy - 4y^2)= x(x-y)-4y(x-y)=(x-y)*(x - 4y)
b) x^2 -y^4+9y -x(9+y-y^3= x^2-y^4 +9y-9x-xy+xy^3= (x^2-xy)-(9x-9y)+(xy^3-y^4)=x(x-y)-9(x-y)+y^3(x-y)=(x-y)*(y^3+x-9)
d) 2u^2+2v^2-5uv=(2u^2-4uv)+(2v^2-uv)=2u(u-2v)+v(2v-u)= 2u(u-2v)-v(u-2v)=(u-2v)*(2u-v)
d,
\(a^2+2ab+b^2-ac-bc=\left(a+b\right)^2-c\left(a+b\right)\)
\(=\left(a+b\right)\left(a+b-c\right)\)
Vậy..
e
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2-\left(2y+1\right)^2\)
\(=\left(x-2y-2\right)\left(x+2y\right)\)
a, \(6x^3y^2.\left(2-x\right)+9x^2y^2\left(x-2\right)\)
\(=6x^3y^2.\left(2-x\right)-9x^2y^2\left(2-x\right)\)
\(=y^2.\left(2-x\right)\left(6x^3-9x^2\right)\)
\(=3x^2y^2.\left(2-x\right)\left(2x-3\right)\)
b. \(x^2-4x+4y-y^2\)
\(=\left(x^2-y^2\right)-\left(4x-4y\right)\)
\(=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-4\right)\)
a) \(=x^2-\left(2y\right)^2=\left(x-2y\right)\left(x+2y\right)\)
b) \(=x^2-\left(3y\right)^2=\left(x-3y\right)\left(x+3y\right)\)
c) \(=\left(2x-1\right)^2-\left(2y\right)^2=\left(2x-1-2y\right)\left(2x-1+2y\right)\)
d) \(=x^2-10xy+\left(5y\right)^2=\left(x-5y\right)^2\)
e) \(=\left(3x\right)^2-6x+1=\left(3x-1\right)^2\)
f) \(=\left(5x\right)^2+20x+4=\left(5x+2\right)^2\)
\(a)x^2-4y^2=(x-2y)(x+2y)\\b)x^2-9y^2=(x-3y)(x+3y)\\c)(2x-1)^2-4y^2=(2x-1-2y)(2x-1+2y)\\d) x^2-10xy+25y^2=(x-5y)^2\\e)9x^2-6x+1=(3x-1)^2\\f)25x^2+20x+4=(5x+2)^2\)