K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

\(P=ax^2+bx+c=a\left(x^2+\frac{b}{a}x\right)+c=a\left(x+\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}\)

Đặt \(c-\frac{b^2}{4a}=k.\)Do \(\left(x+\frac{b}{2a}\right)^2\ge0\)nên:

- Nếu a > 0 thì \(a\left(x+\frac{b}{2a}\right)^2\ge0\). Do đó \(P\ge k\)

min P = k khi và chỉ khi \(x=-\frac{b}{2a}\)

- Nếu a < 0 thì \(a\left(x+\frac{b}{2a}\right)^2\le0\). Do đó \(P\le k\)

max P = k khi và chỉ khi \(x=-\frac{b}{2a}\)

28 tháng 4 2019

mk co nen nghe ban than da tung phan boi mk ko... 

14 tháng 9 2018

\(x+y=4xy\Rightarrow\frac{x+y}{xy}=\frac{1}{x}+\frac{1}{y}=4\)

\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow4>=\frac{4}{x+y}\Rightarrow x+y>=1\)(bđt svacxo)

\(x^2+y^2>=\frac{\left(x+y\right)^2}{2};xy< =\frac{\left(x+y\right)^2}{4}\)

\(\Rightarrow P=x^2+y^2-xy>=\frac{\left(x+y\right)^2}{2}-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}>=\frac{1^2}{4}=\frac{1}{4}\)

dấu = xảy ra khi \(x+y=1;x=y\Rightarrow x=y=\frac{1}{2}\left(tm\right)\)

vậy min P là \(\frac{1}{4}\)khi x=y=\(\frac{1}{2}\)