Giải các bất phương trình sau
- x^2-5x+6<0
- \(\frac{2x\left(3x-5\right)}{x^2+1}\)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{x+3}{6}\)+\(\frac{x-2}{10}\)>\(\frac{x+1}{5}\)
<=> \(\frac{5\left(x+3\right)}{30}\)+\(\frac{3\left(x-2\right)}{30}\)>\(\frac{6\left(x+1\right)}{30}\)
<=>5(x+3)+3(x-2)>6(x+1)
<=>5x+15+3x-6>6x+6
<=>8x-6x >6-15+6
<=>2x >-3
<=>x >-1,5
Vậy tập nghiệm của bất phương trình là {x/x>-1,5}
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
a) \(\left(x+\frac{1}{9}\right)\left(2x-5\right)< 0\)
TH1 : \(\hept{\begin{cases}x+\frac{1}{9}>0\\2x-5< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{-1}{9}\\x< \frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\frac{-1}{9}< x< \frac{5}{2}\)( thỏa )
TH2 : \(\hept{\begin{cases}x+\frac{1}{9}< 0\\2x-5>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< -\frac{1}{9}\\x>\frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\frac{5}{2}< x< -\frac{1}{9}\)( loại )
Vậy....
b) \(x^2-6x+9< 0\)
\(\Leftrightarrow\left(x-3\right)^2< 0\)( vô lý )
Vậy bpt vô nghiệm
\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)
\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)
\(\Leftrightarrow4x+4x>-1\)
\(\Leftrightarrow8x>-1\)
\(\Leftrightarrow x>-\frac{1}{8}\)
\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)
\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-6x^2< 1+3\)
\(\Leftrightarrow-2x^2< 4\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow x>\pm\sqrt{2}\)
\(b,\frac{x+5}{6}+\frac{x-1}{3}\le\frac{x+3}{2}-1.\)
\(\Rightarrow\frac{x+5}{6}+\frac{2\left(x-1\right)}{6}\le\frac{x+3}{2}-1\)
\(\Rightarrow\frac{x+5}{6}+\frac{2x-2}{6}\le\frac{x+3}{2}-1\)
\(\Rightarrow\frac{x+5+2x-2}{6}\le\frac{x+3}{2}-1\)
\(\Rightarrow\frac{3x+3}{6}\le\frac{3\left(x+3\right)}{6}-\frac{6}{6}\)
\(\Rightarrow\frac{3x+3}{6}\le\frac{3x+9}{6}-\frac{6}{6}\)
\(\Rightarrow\frac{3x+3}{6}\le\frac{3x+9-6}{6}\)
\(\Rightarrow\frac{3x+3}{6}\le\frac{3x+3}{6}\)
\(\Rightarrow3x+3\le3x+3\)
\(\Rightarrow S=\varnothing\)
\(Xét-mẫu-của-biểu-thức:\left(đk:x\ge1\right).ta-có:x-\sqrt{2\left(x^2+5\right)}=\frac{-\left(x^2+10\right)}{x+\sqrt{2\left(x^2+5\right)}}< 0\\
.\)Vậy nó luôn <0 với đk x>=1
\(Xét-tử:đặt-nó-bằng-A=\left(x-2\right)^2-\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)=2\sqrt{x-1}\left(2x-1\right)-\left(x-1\right)\left(x+4\right)\\ =\sqrt{x-1}\left(2\left(2x-1\right)-\sqrt{x-1\left(x+4\right)}\right)\ge0.\\ \)\(=>\left(2\left(2x-1\right)-\sqrt{\left(x-1\right)}\left(x+4\right)\right)\ge0< =>\frac{\left(5-x\right)\left(x-2\right)^2}{2\left(2x-1\right)+\left(x-1\right)\left(x+4\right)}\ge0< =>x\le5\) Vậy . \(1\le x\le5\)
Bài `1:`
`h)(3/4x-1)(5/3x+2)=0`
`=>[(3/4x-1=0),(5/3x+2=0):}=>[(x=4/3),(x=-6/5):}`
______________
Bài `2:`
`b)3x-15=2x(x-5)`
`<=>3(x-5)-2x(x-5)=0`
`<=>(x-5)(3-2x)=0<=>[(x=5),(x=3/2):}`
`d)x(x+6)-7x-42=0`
`<=>x(x+6)-7(x+6)=0`
`<=>(x+6)(x-7)=0<=>[(x=-6),(x=7):}`
`f)x^3-2x^2-(x-2)=0`
`<=>x^2(x-2)-(x-2)=0`
`<=>(x-2)(x^2-1)=0<=>[(x=2),(x^2=1<=>x=+-2):}`
`h)(3x-1)(6x+1)=(x+7)(3x-1)`
`<=>18x^2+3x-6x-1=3x^2-x+21x-7`
`<=>15x^2-23x+6=0<=>15x^2-5x-18x+6=0`
`<=>(3x-1)(5x-1)=0<=>[(x=1/3),(x=1/5):}`
`j)(2x-5)^2-(x+2)^2=0`
`<=>(2x-5-x-2)(2x-5+x+2)=0`
`<=>(x-7)(3x-3)=0<=>[(x=7),(x=1):}`
`w)x^2-x-12=0`
`<=>x^2-4x+3x-12=0`
`<=>(x-4)(x+3)=0<=>[(x=4),(x=-3):}`
`m)(1-x)(5x+3)=(3x-7)(x-1)`
`<=>(1-x)(5x+3)+(1-x)(3x-7)=0`
`<=>(1-x)(5x+3+3x-7)=0`
`<=>(1-x)(8x-4)=0<=>[(x=1),(x=1/2):}`
`p)(2x-1)^2-4=0`
`<=>(2x-1-2)(2x-1+2)=0`
`<=>(2x-3)(2x+1)=0<=>[(x=3/2),(x=-1/2):}`
`r)(2x-1)^2=49`
`<=>(2x-1-7)(2x-1+7)=0`
`<=>(2x-8)(2x+6)=0<=>[(x=4),(x=-3):}`
`t)(5x-3)^2-(4x-7)^2=0`
`<=>(5x-3-4x+7)(5x-3+4x-7)=0`
`<=>(x+4)(9x-10)=0<=>[(x=-4),(x=10/9):}`
`u)x^2-10x+16=0`
`<=>x^2-8x-2x+16=0`
`<=>(x-2)(x-8)=0<=>[(x=2),(x=8):}`
a) \(x^2-5x+6< 0\)
\(\Leftrightarrow x^2-2x-3x+6< 0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)< 0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x-2>0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 3\end{cases}}}\)
\(\Leftrightarrow2< x< 3\)
Vậy \(2< x< 3\)là các giá trị cần tìm của bất phương trình
b) \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)
\(\Leftrightarrow2x\left(3x-5\right)< 0\)(vì \(x^2+1>0\forall x\) )
\(\Leftrightarrow\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\3x< 5\end{cases}\Leftrightarrow}\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}}}\)
\(\Leftrightarrow0< x< \frac{5}{3}\)
Vậy \(0< x< \frac{5}{3}\)là các giá trị cần tìm của bất phương trình