Cho đa thức \(f\left(x\right)=2x^2+10x+16\)
Chứng minh đa thức trên không có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+10x+15=0\)
\(\Leftrightarrow2.\left(x^2+5x+\frac{15}{2}\right)=0\Leftrightarrow x^2+5x+\frac{15}{2}=0\)
\(\Leftrightarrow x^2+5x+\frac{25}{4}+\frac{6}{4}=0\)
\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=-\frac{6}{4}\)
Vậy...
\(f\left(x\right)=x^2+x^2+4x+6x+4+9+2\)
\(=\left(x^2+4x+4\right)+\left(x^2+6x+9\right)+2\)
\(=\left(x+2\right)^2+\left(x+3\right)^2+2>0\)
Vậy đa thức trên ko có ngiệm
\(f\left(x\right)=2x^2+10x+21=2x^2+10x+12,5+8,5=2\left(x^2+5x+6,25\right)+8,5\)
\(\Leftrightarrow f\left(x\right)=2\left(x^2+2,5x+2,5x+2,5^2\right)+8,5=2\left[x\left(x+2,5\right)+2,5\left(x+2,5\right)\right]+8,5\)
\(\Leftrightarrow f\left(x\right)=2\left(x+2,5\right)\left(x+2,5\right)+8,5=2\left(x+2,5\right)^2+8,5>0\forall x\)
Vậy \(f\left(x\right)\)vô nghiệm!
Câu 1:
a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)
c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)
\(P\left(0\right)=0\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
a) Ta có:
\(P\left(x\right)=5x^3+2x^4-x^2+3x^2-3x^3-x^4+1-4x^3\)
\(\Rightarrow P\left(x\right)=2x^4-x^4+5x^3-3x^3-4x^3-x^2+3x^2+1\)
\(\Rightarrow P\left(x\right)=x^4-2x^3+2x^2+1\)
Đầu tiên ta c/m đẳng thức phụ (nếu lớp 8 sẽ gọi là hằng đẳng thức và được áp dụng vào luôn còn lớp 7 phải c/m):\(a^2-b^2=\left(a-b\right)\left(a+b\right)\) (1). Thật vậy,ta có: \(a^2-b^2=a^2+ab-ab-b^2\)
\(=\left(a^2+ab\right)-\left(ab+b^2\right)=a\left(a+b\right)-b\left(a+b\right)=\left(a-b\right)\left(a+b\right)\).
Và đẳng thức: \(\left(a-b\right)^2=a^2-2ab+b^2\) (2) cái này thì đơn giản,chuyển \(\left(a-b\right)^2=\left(a-b\right)\left(a-b\right)\) rồi nhân phá tung cái ngoặc đó ra là xong.
Do đó 2 đẳng thức trên đúng.Trở lại bài toán,ta có:
\(-x^2+8x-8=0\Leftrightarrow x^2-8x+8=0\) (Chia hai vế của đẳng thức cho -1)
\(\Leftrightarrow\left(x^2-2.x.4+4^2\right)-4^2+8=0\)
Áp dụng đẳng thức số 2 suy ra:
\(\left(x-4\right)^2-8=0\Leftrightarrow\left(x-4\right)^2-\left(\sqrt{8}\right)^2=0\) (do \(\left(\sqrt{8}\right)^2=8\))
Áp dụng đẳng thức số 1 suy ra:
\(\left(x-4-\sqrt{8}\right)\left(x-4+\sqrt{8}\right)=0\Leftrightarrow\orbr{\begin{cases}x=4+\sqrt{8}\\x=4-\sqrt{8}\end{cases}}\)
Vậy ...
Đúng không ta?
F(x)=2(x^2+5x+8)
=2(x^2+2.x.2,5+2,5^2)+3,5
=2(x+2,5)^2+3,5 >=3,5>0
F(x) vô nghiệm
good job boy