tính A=[ 1+\(\frac{1}{3x5}\)] + [1+ \(\frac{1}{5x7}\)] +\(\left[1+\frac{1}{7x9}\right]\)+........+ \(\left[1+\frac{1}{37x39}\right]\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{9.11}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\frac{10}{11}\)
\(=\frac{5}{11}\)
\(=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+....+\frac{2}{9\times11}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{11}\right)\)
\(=\frac{1}{2}\times\frac{10}{11}\)
\(=\frac{5}{11}\)
Tìm x:
\(\left(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+.....+\frac{1}{19x21}\right).x=\frac{9}{7}\)
\(\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\right)x=\frac{9}{7}\)
\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\right]x=\frac{9}{7}\)
\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{21}\right)\right]x=\frac{9}{7}\)
\(\left(\frac{1}{2}.\frac{2}{7}\right)x=\frac{9}{7}\)
\(\frac{1}{7}.x=\frac{9}{7}\)
\(x=\frac{9}{7}\div\frac{1}{7}\)
\(x=9\)
Vậy ...
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)
\(\Leftrightarrow2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x\left(x+2\right)}\right)=2.\frac{8}{17}\)
\(\Leftrightarrow\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x\left(x+2\right)}=\frac{16}{17}\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{16}{17}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{16}{17}=\frac{1}{17}\)
\(\Rightarrow x+2=17\Rightarrow x=15\)
\(S.2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(S.2=\frac{1}{1}-\frac{1}{11}\)
\(S.2=\frac{10}{11}\)
\(S=\frac{10}{11}:2\)
\(S=\frac{5}{11}\)
\(A=\dfrac{1}{3.5}+\dfrac{1}{7.9}+...+\dfrac{1}{37.39}\\ =\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{7.9}+...+\dfrac{2}{37.39}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{39}\right)\\ =\dfrac{1}{2}.\dfrac{4}{13}\\ =\dfrac{2}{13}\)
\(A=\left(1-\frac{1}{15}\right).\left(1-\frac{1}{21}\right).\left(1-\frac{1}{28}\right)......\left(1-\frac{1}{1275}\right)\)
Giải
Ta có A= [1+1/3.5] + [1+1/5.7] + [1+1/7.9] + ... + [1+1/37.39]
=>A= (1+1+1+...+1) +(1/3.5 + 1/5.7 + 1/7.9 + ... + 1/37.39)
=> A = 18 + 1/2.(2/3.5+2/5.7+2/7.9+...+2/37.39)
=>A = 18 + 1/2.(1/3-1/5+1/5-1/7+1/7-1/9+...+1/37-1/39)
=> A= 18 + 1/2.(1/3-1/39)
=> A= 18 + 1/2 . 4/13
=>A= 18 + 2/13 = 236/13
cám ơn bạn