A = n+4/n+1( thuộc [] )
tìm điều kiện của n để A là phân số ? tìm tất cả các số nguyên của n để A là số nguyên ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, đk : n khác 2
b, Với n = 0 => \(A=\dfrac{0+4}{0-2}=\dfrac{4}{-2}=-2\)
Với n = -2 => \(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)
Với n = 4 => \(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)
c, \(A=\dfrac{n+4}{n-2}=\dfrac{n-2+6}{n-2}=1+\dfrac{6}{n-2}\Rightarrow n-2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
n - 2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 3 | 1 | 4 | 0 | 5 | -1 | 8 | -4 |
a: Để phân số A có nghĩa thì n-2<>0
hay n<>2
b: Thay n=0 vào A, ta được:
\(A=\dfrac{0+4}{0-2}=-2\)
Thay n=-2 vào A, ta được:
\(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)
Thay n=4 vào A, ta được:
\(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)
c: Để A là số nguyên thì \(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
a/để A là phân số =. n-1 khác 0
=>n khác 1
vậy với n khác 1 thì A là phân số
b/ để A nguyên => 5 chia hết cho n-1
=>n-1 thuộc Ư(5)={-1,-5,1,5}
nếu n-1=1=>n=2
nếu n-1=-1=>n=0
nếu n-1=-5=>n=-4
nếu n-1=5=>n=6
vậy với n={2,0,-4,6} thì A nguyên
nhầm đôi chỗ
a)n≠1
b Để A là số nguyên thì 5 phải chia hết cho n - 1 => n - 1∈ Ư(5)
Ư(5)= {1;-1;5;-5}
Nếu n-1=1 => n=2 n-1= -1 => n= 0
n-1= 5 => n= 6 n-1= -5 => n= -4
đúng mình nha
a/để A là phân số =. n-1 khác 0
=>n khác 1
vậy với n khác 1 thì A là phân số
b/ để A nguyên => 5 chia hết cho n-1
=>n-1 thuộc Ư(5)={-1,-5,1,5}
nếu n-1=1=>n=2
nếu n-1=-1=>n=0
nếu n-1=-5=>n=-4
nếu n-1=5=>n=6
vậy với n={2,0,-4,6} thì A nguyên
a, Để A là phân số=> n-1 khác 0 => n khác 1
b, Để A là số nguyên => 5 chia hết cho n-1
=> n-1 thuộc vào Ước của 5
Mà Ước của 5 là -1;-5;1;5
Lập Bảng
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
Vậy n=-4;0;2;6
a) Để A là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)
Vậy \(n\ne1\)để A là phân số
b) Để A là số nguyên thì \(\left(n-1\right)\in\)Ư(5) = {1;-1;5;-5}
Ta có bảng sau:
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Vậy \(n\in\){-4;0;2;6} để A là số nguyên
a)Điều kiện của n để A là phân số là:
\(n-1\ne\Rightarrow n\ne1\)
b)Để A nguyên thì 5 chia hết cho n-1. Hay \(\left(n-1\right)\inƯ\left(5\right)\)
Vậy Ư(5) là:[1,-1,5,-5]
Do đó ta có bảng sau:
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
Do đó để A nguyên thì \(n\in\left[-4;0;2;6\right]\)
a, mẫu số khác 0 -> n khác 1. Vì 5 là số nguyên tố nên muôn A tối giản ( tử số và mẫu số ko cùng chia hết cho số nào khác 1 ) thì 5 ko chia hết cho n-1 hoặc n-1 ko đc chia hết cho 5.-> n khác 5k+1 ( k thuộc Z)
b. Gọi UCLN (n,n+1) = d -> n chia hết cho d; n+1 chia hết cho d
->(n+1) - n chia hết cho d -> 1 chia hết cho d -> d=1
UCLN(n,n+1) = 1 thì phân số tối giản
1) Để A là phân số thì 4 phải chia hết cho n-1
Suy ra n-1 thuộc ước của 4
Vậy n phải có điều kiên là ước của 4 cộng 1
2) Ước của 4 là : -1;-2;-4;1;2;4
Để A là số nguyên thì n-1 phải là số nguyên và bằng 1;2;4
n = 2;3;5
help me
ĐKXĐ : n+1 khác 0 => n khác -1
ta có: A=\(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=\frac{n+1}{n+1}+\frac{3}{n+1}\)
\(\Rightarrow\)để A nguyên thì \(n+1\inƯ\left\{3\right\}\Rightarrow n+1\in\left\{-3;-1;1;3\right\}\Rightarrow\)để A nguyên thì \(n\in\left\{-4;-2;0;2\right\}\)