Với ba số thực a,b,c thỏa mãn điều kiện \(a\left(a-b+c\right)< 0\)
Chứng minh phương trình\(ax^2+bx+c=0\)(ẩn x) luôn có hai nghiệm phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=ax^{3\:}+bx^2+cx+d\left(a\ne0\right)\)
Nếu \(a< 0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=+\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=-\infty\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)\in\left(-\infty;+\infty\right)\), với \(x\in\left(-\infty;+\infty\right)\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm
Nếu \(a>0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=+\infty\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm
4c = -( a +2b)
\(\Delta=b^2-4ac=b^2+a\left(a+2b\right)=a^2+b^2+2ab=\left(a+b\right)^2\ge0\)
Lời giải:
$f(x)=ax^2+bx+c$ liên tục trên $[0; \frac{1}{3}]$
$f(0)=c$
$f(\frac{1}{3})=\frac{1}{9}a+\frac{1}{3}b+c$
$\Rightarrow 18f(\frac{1}{3})=2a+6b+18c$
$\Rightarrow f(0)+18f(\frac{1}{3})=2a+6b+19c=0$
$\Rightarrow f(0)=-18f(\frac{1}{3})$
$\Rightarrow f(0).f(\frac{1}{3})=-18f(\frac{1}{3})^2\leq 0$
$\Rightarrow$ pt luôn có nghiệm trong $[0; \frac{1}{3}]$ (đpcm)
Đặt \(f\left(x\right)=\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)\)
Hàm \(f\left(x\right)\) hiển nhiên liên tục trên R
Do vai trò a;b;c như nhau, không mất tính tổng quát giả sử \(a< b< c\)
\(f\left(a\right)=\left(a-b\right)\left(a-c\right)\)
\(f\left(b\right)=\left(b-a\right)\left(b-c\right)\)
\(f\left(c\right)=\left(c-a\right)\left(c-b\right)\)
\(f\left(a\right).f\left(b\right)=\left(a-b\right)\left(a-c\right)\left(b-a\right)\left(b-c\right)=\left(a-b\right)^2\left(c-a\right)\left(b-c\right)\)
Do \(a< b< c\Rightarrow\left\{{}\begin{matrix}c-a>0\\b-c< 0\end{matrix}\right.\) \(\Rightarrow f\left(a\right).f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (a;b)
\(f\left(b\right).f\left(c\right)=\left(b-a\right)\left(b-c\right)\left(c-a\right)\left(c-b\right)=\left(b-c\right)^2\left(a-b\right)\left(c-a\right)\)
Do \(a< b< c\Rightarrow\left\{{}\begin{matrix}a-b< 0\\c-a>0\end{matrix}\right.\) \(\Rightarrow f\left(b\right).f\left(c\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (b;c)
Vậy pt đã cho luôn có 2 nghiệm phân biệt
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
\(a^2-ab+ac< 0\Rightarrow4ac< 4ab-4a^2\)
Xét \(\Delta=b^2-4ac>b^2-\left(4ab-4a^2\right)=4a^2-4ab+b^2=\left(2a-b\right)^2\ge0\)
\(\Rightarrow\Delta>0\Rightarrow\) pt luôn có 2 nghiệm phân biệt
cảm ơn bạn hi vọng sẽ được bạn giúp đỡ mình vì mình kém toán lắm