K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2015

Dễ mà bạn, cần mình giải cho không?

1 tháng 11 2015

C = 3 + 32 + 33 + 34 + .... + 3100

C = (3 + 32 + 33 + 34) + ....... + (397 + 398 + 399 +3100)

C = 3(1 + 3 + 32 + 33) + ... + 397 (1 + 3 + 32 + 33)

C = 3. 40 + ... + 397 . 40

C = 40(3 + ... + 397) chia hết cho 40

13 tháng 5 2018

 C=3+3^2+3^3+....+3^100                                                                                                                                                                                 C=(3+3^2+3^3+3^4)+........+(3^97+3^98+3^99+3^100)                                                                                                                                  C=3(1+3+3^2+3^3)+..........+3^97( 1+3+3^2+3^3)                                                                                                                                           C=3*40+.......+3^97*40                                                                                                                                                                                   C=40(3+.....+3^97) chia hết cho40                                                                                                                                                             nhớ l i k e cho mình nha          

4 tháng 4 2016

C= 31+32+33+...+3100

3C = 32+33+...+3101

3C-C=2C = (32+33+...+3101) - (31+32+33+...+3100) =3101- 31

C = \(\frac{3^{101}-3^1}{2}\)

tự c/m nha

mn vào trả lời giúp e vs ak,e cần gấp lắm

8 tháng 10 2018

mk từng làm dạng này rồi chỉ khác 1 chút thôi

C =  1 + 3 + 3^2 +...+3^10 +3^11 chia hết cho 13

=( 1+3+3^2) + ( 3^3 + 3^4 + 3^5) + ....+(3^9 + 3^10 + 3^11)

=(1+3 +9) + 3^3+(1+3+3^2) + ........+3^9 +(1+3+3^2)

=13 + 3^3 . 13 +....+ 3^9 . 13

=13. (1+3^3+....+3^9) chia hết cho 13

=>C chia hết cho 13

cứ theo cách đấy mà làm

9 tháng 7 2015

\(C=3+3^2+3^3+...+3^{100}=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)=3.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)=3.40+...+3^{97}.40=\left(3+...+3^{97}\right).40\) chia hết cho 40

12 tháng 2 2016

Ta có : C = ( 3 + 32 + 33 + 34 ) + ( 35 + 36 + 3+ 38 ) + .... + ( 397 + 398 + 399 + 3100 )

=> C = 3.( 1 + 3 + 3.3 + 33 ) + 35.( 1 + 3 + 3.3 + 33 ) + .... + 397.( 1 + 3 + 3.3 + 33 )

=> C = 3. 40 + 35.40 + .... + 397.40

=> C = 40.( 3 + 35 + 39 + .... + 397 )

Vì 40 ⋮ 40 nên C ⋮ 40 ( đpcm )

\(C=3+3^2+3^3+...+3^{100}\)

\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+3^{97}\left(1+3+3^2+3^3\right)\)

\(=\left(1+3+3^2+3^3\right)\left(3+3^5+...+3^{97}\right)\)

\(=40\left(3+3^5+...+3^{97}\right)⋮40\left(đpcm\right)\)

13 tháng 8 2019

C = 3 + 32 + 34 + ... + 3100

   = (3 + 32) + (34 + 36) + ... + (398 + 3100)

   = 3(1 + 3) + 34(1 + 32) + ... + 398(1 + 32)

   = 3.4 + 34.10 + ... + 398.10

   = 3.4 + 10(34 + ... + 398)

Ta có: \(\hept{\begin{cases}3.4⋮4\\10\left(3^4+...+3^{98}\right)⋮10\end{cases}}\)=> C \(⋮\)40 (đpcm)

21 tháng 1 2021

                                                                          lg

a)C=3+3^2+3^3+...+3^100

=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)

=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)

=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)

=3.40+...+3^96.40

=40.(3+...+3^96) chia hết cho 40

=>C chia hết cho 40

Vậy C chia hết cho 40

phần b làm tương tự

5 tháng 2 2021

a, sai đề 

b,Ta có :

C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100

   = (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)

  = (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)

  =2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)

  =2.31+...+2^96.31

  =31. (2+...+2^96) chia hết cho 31

=>C chia hết cho 31