2. Cho Tam giác ABC vuông tại A, trung tuyến BD.Phân giác của góc BDA và góc BDC lần lượt cắt AB, BC ở M,N.Biết AB=8cm, AD=6cm
a.Tính độ dài các cạnh BD,BM
b. Chứng minh: MN//AC
c. Tứ giác MNCA là hình gì? Tính diện tích của tứ giác đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AD=DC=6/2=3cm
BD=căn 8^2+3^2=căn 73(cm)
DM là phân giác
=>BM/BD=MA/AD
=>BM/căn 73=MA/3=(BM+MA)/(căn 73+3)=8/căn 73+3
=>BM=8*căn 73/3+căn 73(cm)
b: Xét ΔBAD có DM là phân giác
nen BM/MA=BD/DA=BD/DC
Xét ΔBDC có DN là phân giác
nên BN/NC=BD/DC
=>BM/MA=BN/NC
=>MN//AC
c: Xét tứ giác MNCA có MN//CA và góc MAC=90 độ
nên MNCA là hình thang vuông
b) Xét ΔBDA có
DM là đường phân giác ứng với cạnh AB
nên \(\dfrac{BM}{MA}=\dfrac{BD}{DA}\)(1)
Xét ΔBDC có
DN là đường phân giác ứng với cạnh BC
nên \(\dfrac{BN}{NC}=\dfrac{BD}{DC}\)(2)
Ta có: D là trung điểm của AC(gt)
nên DA=DC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{BM}{MA}=\dfrac{BN}{NC}\)
hay MN//AC(Định lí Ta lét đảo)
c) Xét tứ giác MNCA có MN//AC(cmt)
nên MNCA là hình thang
mà \(\widehat{MAC}=90^0\)
nên MNCA là hình thang vuông
Bài 1:
a: BC=17cm
AH=120/7(cm)
b: Xét tứ giác AMHN có góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật
Suy ra: AH=MN=120/7(cm)
c: Xét ΔAHB vuông tại H có HM là đường cao
nen \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a: \(BM=\sqrt{6^2+8^2}=10\left(cm\right)\)
MD là phân giác
=>BD/BM=DA/AM
=>BD/5=DA/3=(BD+DA)/(5+3)=8/8=1
=>BD=5cm; DA=5cm
b: Xét ΔMBC cóME là phân giác
nên BE/EC=BM/MC=BM/MA=BD/DA
=>DE//AC
Lời giải:
a)
Áp dụng định lý Pitago cho tam giác vuông $BAD$:
\(BD=\sqrt{BA^2+AD^2}=\sqrt{8^2+6^2}=10\) (cm)
Xét tam giác $BDA$ có phân giác $DM$, áp dụng tính chất đường phân giác ta có: \(\frac{MB}{MA}=\frac{DB}{DA}=\frac{10}{6}=\frac{5}{3}\)
\(\Rightarrow \frac{MB}{AB}=\frac{5}{8}\Rightarrow MB=\frac{5}{8}.AB=5\) (cm)
b)
Áp dụng tính chất đường phân giác cho các tam giác sau:
\(\triangle BDA\), phân giác $DM$: \(\frac{MB}{MA}=\frac{DB}{DA}(1)\)
\(\triangle BDC,\) phân giác $DN$: \(\frac{NB}{NC}=\frac{DB}{DC}(2)\)
Mà $DA=DC$ nên \(\frac{DB}{DA}=\frac{DB}{DC}(3)\)
Từ \((1);(2);(3)\Rightarrow \frac{MB}{MA}=\frac{NB}{NC}\). Theo định lý Ta-let đảo suy ra \(MN\parallel AC\) (đpcm)
c)
\(AC=2AD=12\) (cm)
\(MA=BA-BM=8-5=3\) (cm)
Vì $MN\parallel AC$ (cmt) và góc $\widehat{A}=90^0$ nên tứ giác $MNCA$ là hình thang vuông.
\(MN\parallel AC\) nên theo đl Ta-let: \(\frac{MN}{AC}=\frac{MB}{BA}=\frac{5}{8}\) (đã cm ở phần a)
\(\Rightarrow MN=\frac{5}{8}.AC=\frac{5}{8}.12=7,5\) (cm)
Vậy diện tích $MNCA$ là:
\(S=\frac{(MN+AC).MA}{2}=\frac{(7,5+12).3}{2}=29,25\) (cm vuông)
Hình vẽ: