Tìm x,y biết : 2x+624=5y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow5^y-2^x=624\)
Vì \(5^y\) lẻ, 624 chẵn nên \(2^x\) lẻ
Do đó \(x=0\)
\(\Rightarrow5^y-1=624\\ \Rightarrow5^y=625=5^4\\ \Rightarrow y=4\)
Vậy \(\left(x;y\right)=\left(0;4\right)\)
M=10/56+10/140+10/260+....+10/1400
M=5/28+5/70+5/130+....+5/700
3M/5=3/4.7+3/7.10+3/10.13+...+3/25.28
3M/5=1/4-1/7+1/7-1/10+1/10-1/13+....+1/25-1/28
3M/5=1/4-1/28
3M5=3/14
M=3/14.5/3
M=5/14
Vậy M=5/14
b)Vì x,y thuộc N suy ra 5y >624 (hình như đề hơi sai, phải là 5y mới đúng)
suy ra 5y có chữ số tận cùng là 5
suy ra 2x có chữ số tận cùng là 1
ta thấy nếu x=0 thì 2x=1,nếu x>0 thì 2x có chữ số tận cùng là chữ số chẵn
mà 2xcó chữ số tận cùng là 1
suy ra x=0
thay vào ta có:20+624=5y
1+624=5y
625=5y
54=5y
suy ra y=4
vậy x=0,y=4
a)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)
=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)
b)
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)
=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)
c)
Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)
=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)
d)
Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)
=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)
em nghĩ bài này lớp 7 hay 8 gì đó chứ nhỉ,nhưng em ko chắc đâu:v Bài 2a thì em chịu
1/ Ta có: \(\frac{n^2+2n+11}{n+1}=\frac{\left(n+1\right)^2+10}{n+1}=n+1+\frac{10}{n+1}\)
\(\Rightarrow n+1\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Rightarrow n\in\left\{-11;-6;-3;-2;0;1;4;9\right\}\)
2/ b) \(\left(x-y\right)\left(x+y\right)=2018=2.1009=1009.2=1.2018=2018.1\)
TH1: \(\left\{{}\begin{matrix}x-y=2\\x+y=1009\end{matrix}\right.\Leftrightarrow2x=1011\Leftrightarrow x=\frac{1011}{2}\left(L\right)\) (do x thuộc Z)
TH2: \(\left\{{}\begin{matrix}x-y=1009\\x+y=2\end{matrix}\right.\Leftrightarrow2x=1011\Leftrightarrow x=\frac{1011}{2}\left(L\right)\)
(do x thuộc Z)
TH3: \(\left\{{}\begin{matrix}x-y=1\\x+y=2018\end{matrix}\right.\Leftrightarrow2x=2019\Leftrightarrow x=\frac{2019}{2}\) (L)
TH4: \(\left\{{}\begin{matrix}x-y=2018\\x+y=1\end{matrix}\right.\Leftrightarrow2x=2019\Leftrightarrow x=\frac{2019}{2}\left(L\right)\)
Vậy không tồn tại các số x, y thuộc Z thỏa mãn phương trình
\(2,a;5^ynha\)
\(+,x=0\Rightarrow5^y=624+1=625=5^4\Rightarrow y=4\left(\text{thoa man}\right)\)
\(+,x\ne0\Rightarrow2^x+624\text{ chan mà:}5^y\text{ le}\Rightarrow\text{ loai}\)
\(x^2-y^2=2018\Leftrightarrow\left(x+y\right)\left(x-y\right)=2018\text{ là số chan mà:}x+y-\left(x-y\right)=2y\left(\text{ là số chan}\right)\Rightarrow\text{ x+y và: x-y cùng chan hoac cùng le mà:}\left(x+y\right)\left(x-y\right)=2018\Rightarrow\text{ x+y và: x-y cùng chan}\Rightarrow\left(x-y\right)\left(x+y\right)⋮4\text{ mà:}2018\text{ không chia hết cho }4\text{ nên không tìm đ}ư\text{oc x,y thoa man đề bài}\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{2x-y}{10-2}=\dfrac{16}{8}=2\\ \Rightarrow\left\{{}\begin{matrix}x=10\\y=4\end{matrix}\right.\)
Đăng chơi hay làm j vậy.
\(2^x+624=5^y\)
Vì\(5^y\)lẻ, \(624\)chẵn\(\Rightarrow2^x\)lẻ\(\Rightarrow2^x=1\Rightarrow x=0\)
\(\Rightarrow1+624=5^y\)
\(\Rightarrow5^y=625=5^4\Rightarrow y=4\)
Vậy x=0; y=4