K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2019

Đạt A bằng \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\) ta có

\(\frac{1}{101}< \frac{1}{100}\)

\(\frac{1}{102}< \frac{1}{100}\)

...

\(\frac{1}{200}< \frac{1}{100}\)

\(\frac{\Rightarrow1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}.100=\frac{100}{100}=1\)

Vậy \(A< 1\)

29 tháng 3 2019

Bài này làm cực kì dễ, 2 phút là xong, chẳng ai bt làm là sao:(((((

\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}< 1\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)(100 phân số 1/100)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}< \frac{100}{100}=1\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}< 1\)

18 tháng 9 2019

Biến đổi vế phải của đẳng thức :

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{100}\)

\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}-2\left[\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right]\)

\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{200}\)

mk viết nhầm: Chúng tó S không là số tự nhiên

Làm hộ mk nha, ai xong trc mk k cho.

Ta có : \(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{200}=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

 \(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)\(\left(đpcm\right)\)

Ta có 1/101+1/102+1/103+.........+1/200                                                                                                                                                    =(1/101+1/102+...+1/125)+(1/126+1/127+...+1/150)+(1/151+...+1/175)+(1/176+...+1/200)                                                                        =25/125                         +    25/150                      +       25/175         +  25/200                                                                                      =(1/6+1/7+1/8)+1/9                                                                                                                                                                             =107/210+1/8>1/2+1/8=5/8                                                                                                                                                                 VẬY A>5/8                  nhớ k giúp mình nhé chúc bạn học tốt

5 tháng 9 2017

GỌI DÃY SỐ CẦN CHỨNG MINH LÀ A

TA CHIA A THÀNH CÁC NHÓM , MỖI NHÓM 25 SỐ HẠNG , TA ĐƯỢC :

                  100 : 25 = 4 ( NHÓM )

TA CÓ :

A = ( 1/101 + 1/102 +...+1/125 ) + (1/126 + 1/127 +...+ 1/150 ) + (1/151 + 1/152 + ....+ 1/175 ) + (1/176 + 1/177 + ...+ 1/200 )

<=> A >1/125 X 25 + 1/150 X 25 + 1/175 X 25 + 1/200X 125 

<=>A > (1/5 + 1/6 + 1/7 ) + 1/8 

<=> A > 107/210 + 1/8 > 1/2 + 1/8 = 5/8

<=> A > 5/8 ( ĐPCM )

2 tháng 6 2016

\(A>\left(\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\right)+\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)\) (mỗi ngoặc có 50 số hạng)

\(;A>\left(\frac{1}{150}.50\right)+\left(\frac{1}{200}.50\right)=50.\left(\frac{1}{150}+\frac{1}{200}\right)=50.\frac{7}{600}=\frac{7}{12}\)

18 tháng 12 2017

banh

6 tháng 5 2016

Bạn tham khảo tại Câu hỏi của lê chí dũng - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

Chúc bạn học tốt!hihi

6 tháng 5 2016

Tks bạn nhé Nguyễn Thế Bảo

29 tháng 1 2020

Ta có :\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

=> Điều phải chứng minh