Cho tam giác ABC. Gọi D và E thứ tự là trung điểm của các cạnh AC và AB.Trên tia đối của tia DB lấy điểm G sao cho DG=DB.Trên tia đối của tia EC lấy điểm H sao cho EH=EC.Chứng minh:
a.AG song song với BC
b.H,A,G thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Xét △BEC và △AEM có:
\(BE=AE\) (E là trung điểm AB).
\(EC=EM\) (gt)
\(\widehat{BEC}=\widehat{ĂEM}\) (đối đỉnh).
=>△BEC = △AEM (c-g-c)
=>\(AM=BC\) (2 cạnh tương ứng).
\(\widehat{BCE}=\widehat{AME}\)(2 góc tương ứng).
=>BC//AM (1).
-Xét △CDB và △ADN có:
\(CD=AD\) (D là trung điểm AC).
\(BD=DM\) (gt)
\(\widehat{BDC}=\widehat{NDA}\) (đối đỉnh).
=>△CDB=△ADN (c-g-c)
=>\(AN=BC\) (2 cạnh tương ứng).
\(\widehat{BCD}=\widehat{NAD}\)(2 góc tương ứng).
=>BC//AN (2).
-Từ (1) và (2) suy ra: AN//AM
=>AN trùng với AM hay M,A,N thẳng hàng.
Mà BC=AM=AN.
=>A là trung điểm MN.
Xét tam giác MEA và tam giác BEC có:
EM=FC(gt)
Góc MAE= góc EBC(vì 2 góc đoi đinh)
AE=BE(vì E là trung điem của AB)
Do đo tam giác MAE= tam giác EBC(c.g.g)(1)
=> MA =BC(2 cạnh tương ứng)
Xét tam giác ADN và tam giác BDC có:
DN=DB(gt)
góc ADN =góc BDC(2 góc đoi đinh)
AD=CD(vì D là trung điem của AC)
Do đo tam giác ADN= tam giác BDC(c.g.c)(2)
Từ 1 và 2 =>MA=NA
Vì tam giác MEA= tam giác BEC
=> góc B = góc A (2 góc so le trong)
=>AM // BC (3)
Vì tam giác ADN =tam giác BDC
=>góc C =góc A (2 góc so le trong)
=>AN // BC (4)
Từ 3 và 4 theo tiên đề ơ clit
=>A,M,N thẳng hàng
Ma MA=NA
Vay A là trung điem của MN
Hình bạn tự vẽ nhé!
Xét tam giác MAE và tam giác EBC ... =>tam giác MAE = tam giác CBE (c-g-c)
=> AM=BC(...)(1)
và góc M= góc MCB (..)
=> AM//BC(3)
Xét tam giác ADN và tam giác DBC ...=> tam giác ADN = tam giác CDB (c-g-c)
=> AN=CB (...)(2)
và góc N = góc NBC (...)
=> AN//BC(4)
Từ (1) và (2) => AN=AM(5)
Từ(4) và (3) => A , M , N thẳng hàng ( tiên đề Ơ-clit )(6)
Từ (5) và (6) => A là trung điểm của MN
a/ Xét \(\Delta ADM\) và \(\Delta CDB\) có:
AD=CD(vì d là trung điểm của AC)
\(\widehat{ADM}=\widehat{CDM}\) (2 góc đối đỉnh)
DM=DB(gt)
\(\Rightarrow\Delta ADM=\Delta CDB\left(c.g.c\right)\)
\(\Rightarrow\widehat{MAD}=\widehat{BCD}\) (2 góc tương ứng bằng nhau), AM=CB( 2 cạnh tương ứng bằng nhau)
Mà \(\widehat{MAD}\) và \(\widehat{BCD}\) ở vị trí so le trong
\(\Rightarrow\) AM//BC (1)
Xét \(\Delta NAE\) và \(\Delta CBE\) có:
AE=BE(vì E là trung điểm của AB)
\(\widehat{NEA}=\widehat{CEB}\) (2 góc đối đỉnh)
NE=CE(gt)
\(\Rightarrow\Delta NAE=\Delta CBE\left(c.g.c\right)\)
\(\Rightarrow\widehat{NAE}=\widehat{CBE}\) (2 góc tương ứng bằng nhau), NA=CB(2 cạnh tương ứng bằng nhau)
Mà \(\widehat{NAE}\) và \(\widehat{CBE}\) ở vị trí so le trong
\(\Rightarrow\) NA//BC (2)
Ta thấy (1) và (2) mâu thuẫn vì qua một điểm nằm ngoài một đường thẳng chỉ kẻ được một đường thẳng duy nhất song song với đường thẳng ấy nên ba điểm N , A , M thẳng hàng (3)
Mặt khác: AM=CB(cmt)
NA=CB(cmt)
\(\Rightarrow\) AM=NA (4)
Từ (3) và (4) \(\Rightarrow\) A là trung điểm của MN