K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2019

a, Xét △ABD và △ACD có:

AB=AC(gt)AB=AC(gt)

Aˆ1=Aˆ2A^1=A^2 (vì AD là phân giác của ∠A)

AD chung

⇒ΔABD=ΔACD(c.g.c)⇒ΔABD=ΔACD(c.g.c)

Vậy ΔABD=ΔACD(đpcm)ΔABD=ΔACD(đpcm)

b, Vì △ABD=△ACD (chứng minh trên) nên ta có:

Bˆ=CˆB^=C^ (hai góc tương ứng)

Vậy Bˆ=Cˆ(đpcm)B^=C^(đpcm)

c, Vì △ABD=△ACD (chứng minh trên) nên ta có:

Dˆ1=Dˆ2D^1=D^2 (hai góc tương ứng)

Mà Dˆ1+Dˆ2=1800D^1+D^2=1800 (kề bù)

⇒Dˆ1=Dˆ2=18002=900⇒D^1=D^2=18002=900

Vậy AD⊥BC(đpcm)

2 tháng 5 2020

6754-4567=

10 tháng 1 2022

10 tháng 1 2022

TK

 

2 tháng 5 2020

a) Trong \(\Delta ABC\),do AB < AC(gt) nên \(\widehat{C}< \widehat{B}\)(góc đối diện với cạnh lớn hơn là góc lớn hơn)

\(\widehat{ADB},\widehat{ADC}\)theo thứ tự là góc ngoài tại đỉnh D của \(\Delta ADC,\Delta ADB\) ta có :

\(\hept{\begin{cases}\widehat{ADB}=\widehat{C}+\widehat{A_1}\left(1\right)\\\widehat{ADC}=\widehat{B}+\widehat{A_2}\left(2\right)\end{cases}}\)

Vì \(\widehat{C}< \widehat{B}\),còn \(\widehat{A_1}=\widehat{A_2}\)(gt) , do đó từ 1 và 2 => \(\widehat{ADB}< \widehat{ADC}\)

b) Do AB < AC(gt),trên cạnh AC lấy điểm E sao cho AE = AB

Xét \(\Delta ADB\) và \(\Delta ADE\)có :

AD chung

\(\widehat{DAB}=\widehat{DAE}\)

AB = AE(gt)

=> \(\Delta ADB=\Delta ADE\left(c.g.c\right)\)

Nên \(\widehat{AED}=\widehat{B}\) mà \(\widehat{AEB}+\widehat{DEC}=180^0\)(2 góc kề bù),do đó \(\widehat{B}+\widehat{DEC}=180^0\left(3\right)\)

Mặt khác \(\Delta ABC\)thì \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\), do đó \(\widehat{B}+\widehat{C}< 180^0\left(4\right)\)

Từ 3 -> 4 ta có \(\widehat{DEC}>\widehat{C}\)

Trong \(\Delta DEC\)ta có DE < DC,nhưng DE = DB(cạnh tương ứng của hai tam giác bằng nhau : \(\Delta ADB=\Delta ADE\))

Vậy DB < DC hay DC > DB

12 tháng 4 2020

Tại sao mà nói AD là tia phân giác rồi mà còn CD > DB ????

a: AB<AC

=>góc B>góc C

góc ADB=góc DAC+góc ACD

góc ADC=góc BAD+góc ABD

mà góc ACD<góc ABD; góc BAD=góc CAD

nên góc ADB<góc ADC

b: Xét ΔABE có

AD vừa là đường cao, vừa là phân giác

=>ΔABE cân tại A

c: AD là phân giác

=>BD/AB=CD/AC

mà AB<AC
nên BD<CD

a: Xét ΔADB và ΔADC có

AD chung

góc BAD=góc CAD

AB=AC

=>ΔABD=ΔACD

b: Xét ΔDHB và ΔDHC có

DH chung

HB=HC

DB=DC

=>ΔDHB=ΔDHC

=>góc BDH=góc CDH

=>DH là phân giác của góc BDC

c: ΔABC cân tại A
mà AH là phân giác

nên AH vuông góc CB

a:

Xét ΔABC có AB<AC

mà \(\widehat{C};\widehat{B}\) lần lượt là góc đối diện của các cạnh AB,AC

nên \(\widehat{ACB}< \widehat{ABC}\)

Ta có: AD là phân giác của góc BAC

=>\(\widehat{BAD}=\widehat{CAD}\)

Xét ΔADB có \(\widehat{ADC}\) là góc ngoài tại đỉnh D

nên \(\widehat{ADC}=\widehat{DAB}+\widehat{ABD}=\widehat{DAB}+\widehat{ABC}\)

Xét ΔADC có \(\widehat{ADB}\) là góc ngoài tại đỉnh D

nên \(\widehat{ADB}=\widehat{DAC}+\widehat{ACB}\)

Ta có: \(\widehat{ADC}=\widehat{BAD}+\widehat{ABC}\)

\(\widehat{ADB}=\widehat{DAC}+\widehat{ACB}\)

mà \(\widehat{BAD}=\widehat{DAC};\widehat{ABC}>\widehat{ACB}\)

nên \(\widehat{ADC}>\widehat{ADB}\)

b: Xét ΔABE có

AD là đường cao

AD là đường phân giác

Do đó: ΔABE cân tại A

c: Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)

mà AB<AC

nên DB<DC