B = 3 + 3^2 + 3^3 + 3^4 +...+ 3^20
chứng minh rằng B là bội của 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để B là bội của 12 thì B phải chia hết cho 12 , hay có thể nói B phải vừa chia hết cho 3 và vừa chia hết cho 4.
Mà bản thân B đã chia hết cho 3 (do mọi số hạng của B đều chia hết cho 3) (1), nên chỉ cần chứng minh B chia hết cho 4!
Rút 3/4 ra:
=> B= (3/4)x(4 + 12 + 36 + 108 +... + 4649045868)
Có (4+12+36+108+...+4649045868) chia hết cho 4 (2)
Từ (1) và (2) => B chia hết cho 12.
Mình chỉ biết làm vậy thôi, cách của mình khi chứng minh chia hết cho 4 có nhiều số, mình cũng k bik cách ngắn hơn nữa, mong bạn hiểu.
B là B(12) thì B phải chia hết cho 12 hay B sẽ phải chia hết cho 3 và chia hêt cho 4.
Vì B đã chia hết cho 3 nên ta cần chứng minh B chia hết cho 4
Ta có: B=31+32+33+...+320
=(31+32)+(33+34)+...+(319+320)
=3(1+3)+33(1+3)+...+319(1+3)
=3.4+33.4+...+319+4
=4.(3+33+...+319)
Vì b chia hết cho 4 và 3 nên từ đó suy ra B chia hết cho 12
a, đề phải là cm ko chia hết cho 5
A = 5+5^2+(5^3+5^4)+(5^5+5^6)+(5^7+5^8)
= 30 + 5.(5^2+5^3)+5^3.(5^2+5^3)+5^5.(5^2+5^3)
= 30+5.150+5^3.150+5^5.150
= 30+150.(5+5^3+5^5)
Vì 150 chia hết cho 50 => 150.(5+5^3+5^5) chia hết cho 50
Mà 30 ko chia hết cho 50
=> A ko chia hết cho 50
a)S=1-3+32-...+398-399
=(1-3+32-33)+...+(396-397+398-399)
=-20+...+396.(-20)
=-20.(1+....+396) là bội của -20(ĐPCM)
b)S=1-3+32-...+398-399 (1)
=>3S=3-32+33+...+399-3100(2)
Từ 1 và 2 =>4S=1-3100
Do S chia hết cho -20 =>4S chia hết cho -20=>4S chia hết cho 4=>1-3100 chia hết cho 4
=>3100 chia 4 dư 1
2)
Nếu 3^n +1 là bội của 10 thì 3^n +1 có tận cùng là 0
=> 3n có tận cùng là 9
Mà : 3^n+4 +1 = 3^n . 3^4 = .....9 . 81 + 1 = .....9 +1 = ......0
hay 3^n+4 có tận cùng là 0 => 3^n+4 là bội của 10
Vậy 3^n+4 là bội của 10.