số học sinh trong một trường khi xếp hàng 3 ,4,5,6,7 đều thiếu 3 học sinh nhưng khi xếp thành 9 hàng thì vừa đủ . biết số học sinh không quá 1500 . tính số học sinh của trường đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh của trường là a ,theo đề bài cho , ta có :
a+3 chia hết cho 3,4,5,6,7 .
suy ra a+3=BC(3,4,5,6,7)
3=3
4=2^2
5=5
6=2.3
7=7
a+3=B(BCNN(3,4,5,6,7)=420học sinh . vì số học sinh chưa vượt quá 1500 nên ta tìm được a+3=420,840,1260.
suy ra a=417,837.1257.
do số học sinh của trường xếp hàng 9 vừa đủ nên số học sinh của trường đó là 837 em.
tick mình đi
Bài hơi kì quặc,số học sinh chia hết cho 9 nhưng sao không chia hết cho 3?
gọi số học sinh của trường đó là x (x thuộc N*; học sinh)
ta có :
x ⋮ 3
x ⋮ 4
x ⋮ 5
nên :
x thuộc BC(3; 4; 5)
BCNN(3;4;5) = 60
=> BC(3; 4; 5) = B(60) = {0; 60; 120; 180; 240; 300; 360; 420; 480; 540; ...}
mà x khoảng từ 400 đến 500
=> x = 420; 480
mà khi xếp thành 4 hàng thì x ⋮ 9
=> x = 420
Gọi số học sinh của một trường đó là a \(\left(400\le a\le500\right)\)
Khi xếp hàng 3, hàng 4, hàng 5 thì vừa đủ nên ta có:
\(\hept{\begin{cases}a⋮3\\a⋮4\\a⋮5\end{cases}}\Rightarrow a\in BC\left(3,4,5\right)\)và \(400\le a\le500\)
BCNN (3, 4, 5) = 3. 22. 5 = 60
\(a\in BC\left(3,4,5\right)=B\left(60\right)=\left\{0;60;120;180;240;300;360;420;480;...\right\}\)
Vì khi xếp hàng 9 thì thiếu 3 người nên a = 420
Vậy số học sinh của trường đó là; 420 học sinh
gọi số đó là a có
a+1chia hết cho2,3,4=>a+1 thuộc TH BC(2,3,4)
BCNN(2,3,4)=12=>A=12-1=11
cần tìm số a chia hết cho 7 và <300 nên số cần tìm là17
Gọi số học sinh khối 6 của trường đó là a (a ∈ N*; a < 300).
Theo đề bài ta có: a + 1 ⋮ 2 , a + 1 ⋮ 3 , a + 1 ⋮ 4 , a + 1 ⋮ 5; a ⋮ 7
Do đó: a + 1 là BC ( 2 ; 3 ; 4 ; 5 )
BCNN ( 2 ; 3 ; 4 ; 5 ) = 60
BC ( 2 ; 3 ; 4 ; 5 ) = B (60) = { 0; 60; 120; 180; 240; 300; 360; … }
⇒ a + 1 ∈ { 60; 120; 180; 240; 300; 360; … }
Vì a ∈ N* nên a ∈ { 59; 119; 179; 239; 299; 359; … }
Vì a < 300 nên a ∈ { 59; 119; 179; 239; 299 }
Mà a ⋮ 7 nên a = 119.
Vậy số học sinh khối 6 của trường đó là 119 học sinh.
Gọi số học sinh khối 6 của trường đó là a (a ∈ N*; a < 300).
Theo đề bài ta có: a + 1 ⋮ 2 , a + 1 ⋮ 3 , a + 1 ⋮ 4 , a + 1 ⋮ 5; a ⋮ 7
Do đó: a + 1 là BC ( 2 ; 3 ; 4 ; 5 )
BCNN ( 2 ; 3 ; 4 ; 5 ) = 60
BC ( 2 ; 3 ; 4 ; 5 ) = B (60) = { 0; 60; 120; 180; 240; 300; 360; … }
⇒ a + 1 ∈ { 60; 120; 180; 240; 300; 360; … }
Vì a ∈ N* nên a ∈ { 59; 119; 179; 239; 299; 359; … }
Vì a < 300 nên a ∈ { 59; 119; 179; 239; 299 }
Mà a ⋮ 7 nên a = 119.
Vậy số học sinh khối 6 của trường đó là 119 học sinh.
Gọi số học sinh là x
Theo đề, ta có; \(\left\{{}\begin{matrix}x+1\in BC\left(2;3;4;5;6\right)\\x\in B\left(7\right)\\x< =300\end{matrix}\right.\Leftrightarrow x=119\)
Gọi số học sinh khối 6 của trường đó là x (x ∈ N*; x < 300).
Theo đề bài ta có: x + 1 ⋮ 2 , x + 1 ⋮ 3 , x + 1 ⋮ 4 , x + 1 ⋮ 5; x ⋮ 7
Do đó: x + 1 là BC ( 2 ; 3 ; 4 ; 5 )
BCNN ( 2 ; 3 ; 4 ; 5 ) = 60
BC ( 2 ; 3 ; 4 ; 5 ) = B (60) = { 0; 60; 120; 180; 240; 300; 360; … }
⇒ x + 1 ∈ { 60; 120; 180; 240; 300; 360; … }
Vì x ∈ N* nên x ∈ { 59; 119; 179; 239; 299; 359; … }
Vì x < 300 nên x ∈ { 59; 119; 179; 239; 299 }
Mà x ⋮ 7 nên x = 119.
Vậy số học sinh khối 6 của trường đó là 119 học sinh.
Gọi số học sinh của trường là x(bạn)
(Điều kiện: \(x\in Z^+\))
\(3=3;4=2^2;7=7;9=3^2\)
=>\(BCNN\left(3;4;7;9\right)=3^2\cdot2^2\cdot7=252\)
Vì số học sinh khi xếp hàng 3;4;7;9 đều vừa đủ hàng nên \(x\in BCNN\left(3;4;7;9\right)\)
=>\(x\in B\left(252\right)\)
=>\(x\in\left\{252;504;756;1008;1260;1512;...\right\}\)
mà 1200<=x<=1500
nên x=1260(nhận)
Vậy: Số học sinh của trường là 1260 bạn