A(x)=\(3x^4-\frac{3}{4}x^3+2x^2-3\)
B(x)=\(8x^4+\frac{1}{5}x^3-9x+\frac{2}{5}\)
Tính A(x)+B(x) ; A(x)-B(x) ; B(x)-A(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(\frac{3x+2}{3x-2}\)−62+3x=9x29x2−4 ⇔ \(\frac{9x^2+12x+4}{\left(3x-2\right)\left(3x+2\right)}\) - \(\frac{18x-12}{\left(3x-2\right)\left(3x+2\right)}\) = \(\frac{9x^2}{9x^2-4}\) ⇔ 9x2 + 12x + 4 - 18x + 12 = 9x2 ⇔ 9x2 + 12x + 4 - 18x + 12 - 9x2 = 0
⇔ 16 + 6x = 0 ⇔ 2(8 + 3x) = 0 ⇔ 8 + 3x = 0 ⇔ x = \(\frac{-8}{3}\)
Vậy nghiệm của phương trình là x = \(\frac{-8}{3}\) .
b) \(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\text{⇔ }\frac{-3}{1-5x}+\frac{-3}{5x-3}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
⇔ \(\frac{9-15x}{\left(1-5x\right)\left(5x-3\right)}+\frac{15x-3}{\left(1-5x\right)\left(5x-3\right)}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\) ⇔ 9 - 15x + 15x - 3 = 4
⇔ 8 = 4 ( vô lí)
Vậy phương trình trên vô nghiệm.
Mình chỉ làm 2 câu a, b thôi nhé! Các bài tập này cách làm giống nhau, bạn tự hoàn thành những bài còn lại nhé!
d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = t ta được:
t2 + 3xt + 2x2 = 0
\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0
\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0
\(\Leftrightarrow\) (t + x)(t + 2x) = 0
Thay t = x2 + 4x + 8 ta được:
(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0
\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0
\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0
Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)
Vậy S = {-4; -2}
Mình giúp bn phần khó thôi!
Chúc bn học tốt!!
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
\(A\left(x\right)+B\left(x\right)=3x^4-\frac{3}{4}x^3+2x^2-3+8x^4+\frac{1}{5}x^3-9x+\frac{2}{5}\)
\(=11x^4-\frac{11}{20}x^3+2x^2-\frac{13}{5}-9x\)
\(A\left(x\right)-B\left(x\right)=3x^4-\frac{3}{4}x^3+2x^2-3-8x^4-\frac{1}{5}x^3+9x-\frac{2}{5}\)
\(=-5x^4-\frac{19}{20}x^3+2x^2-\frac{17}{5}+9x\)
Bn làm nót nhé, tương tự thôi
\(A\left(x\right)+B\left(x\right)\)
\(=\left(3x^4-\frac{3}{4}x^3+2x^2-3\right)+\left(8x^4+\frac{1}{5}x^3-9x+\frac{2}{5}\right)\)
\(=11x^4-\frac{11}{20}x^3+2x^2-9x-\frac{13}{5}\)
\(A\left(x\right)-B\left(x\right)\)
\(=3x^4-\frac{3}{4}x^3+2x^2-3-8x^4-\frac{1}{5}x^3+9x-\frac{2}{5}\)
\(=-5x^4-\frac{19}{20}x^3+2x^2+9x-\frac{17}{5}\)
\(B\left(x\right)-A\left(x\right)\)
\(=8x^4+\frac{1}{5}x^3-9x+\frac{2}{5}-3x^4+\frac{3}{4}x^3+2x^2-3\)
\(=5x^4+\frac{19}{20}x^3+2x^2-9x-\frac{13}{5}\)