Tìm GTNN của \(M=\left(2x-x^2\right)\left(y-2y^2\right)\)với \(0\le x\le2;0\le y\le\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=x-y;b=y-z\) thì \(2\ge a,b\ge-2\) và a, b khác 0; \(a\ne-b\)( vì nếu a = -b thì a + b = 0 hay x -z = 0 => z - x = 0 (vô lí) )
Xét: \(2\ge a,b>0\) thì \(\frac{9}{\left(a+b\right)^2}\ge\frac{9}{\left(2+2\right)^2}=\frac{9}{16}\) vì khi đó a + b >0 nên (a+b)2 \(\le\left(2+2\right)^2=16\))
Xét \(-2\le a,b< 0\) thì a + b < 0 suy ra \(\left(a+b\right)^2< \left(-2+-2\right)^2=16\)
Từ 2 trường hợp trên ta suy ra \(\frac{9}{\left(a+b\right)^2}\ge\frac{9}{16}\).
Ta có: \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}\ge\frac{2}{ab}+\frac{1}{\left(a+b\right)^2}\ge\frac{8}{\left(a+b\right)^2}+\frac{1}{\left(a+b\right)^2}=\frac{9}{\left(a+b\right)^2}\ge\frac{9}{16}\)
Vậy...
P/s: Em ko chắc. @Nguyễn Việt Lâm: Em làm thế này có đúng ko ạ? Em ko chắc chỗ xét 2 th ấy, có giải thích quá....:((
\(A=\sqrt{x^2+y\left(y-2x\right)}+\sqrt{y^2+z\left(z-2y\right)}+\sqrt{x^2+z\left(z-2x\right)}\)
\(=\sqrt{x^2-2xy+y^2}+\sqrt{y^2-2yz-z^2}+\sqrt{x^2-2xz+z^2}\)
\(=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)
\(=x-y+y-z+z-x\)
\(=0\)