Cho ba đường cao của tam giác ABC có độ dài lần lượt là 4;12;x.biết x là số tự nhiên.tìm x (mỗi cạnh của tam giác luôn nhỏ hơn tổng 2 cạnh kia và lớn hơn hiệu của chúng)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ha=9; hb=12; hc=16
=>hc*9=ha*16=hb*12
=>hc/16=ha/9=hb/12
=>Haitam giác này đồng dạng
b: ha=4; hb=5; hc=6
=>ha*6=24; hb*5=25; ha*4=24
=>Hai tam giác này ko đồng dạng
hình như dựa vào tính chất dãy tỉ số bằng nhau ak pn. mk cx chỉ nhớ z thui chứ hk chắc cko lém :)
a: Nửa chu vi tam giác ABC là:
\(\dfrac{2+3+4}{2}=4,5\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{4,5\left(4,5-2\right)\left(4,5-3\right)\left(4,5-4\right)}\)
\(=\sqrt{4,5\cdot2,5\cdot1,5\cdot0,5}=\dfrac{3\sqrt{15}}{4}\)(cm2)
=>\(\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{3\sqrt{15}}{4}\)
=>\(2\cdot AH=\dfrac{3\sqrt{15}}{4}\)
=>\(AH=\dfrac{3\sqrt{15}}{8}\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HB^2+\dfrac{135}{64}=4\)
=>\(HB^2=\dfrac{121}{64}\)
=>HB=11/8(cm)
HB+HC=BC
=>HC+11/8=4
=>HC=4-11/8=21/8(cm)
b: Gọi BK,CE lần lượt là các đường cao ứng với các cạnh AC,AB
Vì BK\(\perp\)AC và CE\(\perp\)AB
nên \(S_{ABC}=\dfrac{1}{2}\cdot BK\cdot AC=\dfrac{1}{2}\cdot CE\cdot AB\)
=>\(\left\{{}\begin{matrix}BK\cdot\dfrac{3}{2}=\dfrac{3\sqrt{15}}{4}\\CE\cdot1=\dfrac{3\sqrt{15}}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BK=\dfrac{\sqrt{15}}{2}\left(cm\right)\\CE=\dfrac{3\sqrt{15}}{4}\left(cm\right)\end{matrix}\right.\)
c: Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{4+9-16}{2\cdot2\cdot3}=\dfrac{-1}{4}\)
=>\(\widehat{BAC}\simeq104^029'\)
Xét ΔABH vuông tại H có \(sinB=\dfrac{AH}{AB}=\dfrac{3\sqrt{15}}{16}\)
=>\(\widehat{B}\simeq46^034'\)
Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
=>\(\widehat{ACB}+104^029'+46^034'=180^0\)
=>\(\widehat{ACB}=28^057'\)
( 12 + 4 ) : 2 = 8 cm
Đúng 100% tớ làm rồi , tích tớ nhé Nguyễn Văn Duy
gọi 3 độ dài tương ứng với 4;12;a lần lượt là x;y;z (x;y;z E N*)
ta có: 4x=12y=az=2S(S là diện tích tg ABC)
=>x=2S/4=2S/2.2=S/2
y=2S/12=2S/2.6=S/6
z=2S/a
ta có: x-y<z<x+y
=>\(\frac{S}{2}-\frac{S}{6}<\frac{2S}{a}<\frac{S}{2}+\frac{S}{6}\Rightarrow\frac{3S}{6}-\frac{S}{6}<\frac{2S}{a}<\frac{3S}{6}+\frac{S}{6}\Rightarrow\frac{2S}{6}<\frac{2S}{a}<\frac{4S}{6}\Rightarrow\frac{2S}{6}<\frac{2S}{a}<\frac{2S}{3}\)
=>2/6<2/a<2/3
=>3<a<6,mà a là số tự nhiên
=>a=4 hoặc a=5
Câu hỏi của ngoc Ngoc - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo ở link trên.