Cho ΔABC cân tại A có M là trung điểm của AC, N là trung điểm của AB. BM và CN cắt nhau tại K
a) CM: ΔBNC=ΔCMB
b) BKC là tam giác cân
c) BC < 4.KM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Do $AB=AC$ nên tam giác $ABC$ cân tại $A$
Xét tam giác $BNC$ và $CMB$ có:
$BC$ chung
$\widehat{B}=\widehat{C}$ (do tam giác $ABC$ cân tại $A$)
$BN=\frac{AB}{2}=\frac{AC}{2}=CM$
$\Rightarrow \triangle BNC=\triangle CMB$ (c.g.c)
b.
Vì $\triangle BNC=\triangle CMB$ nên $\widehat{BCN}=\widehat{CBM}$ hay $\widehat{KCB}=\widehat{KBC}$
$\Rightarrow \triangle KBC$ cân tại $K$
$\Rightarrow KB=KC$ (đpcm)
a: Ta có: \(AN=NB=\dfrac{AB}{2}\)
\(AM=MC=\dfrac{AC}{2}\)
mà AB=AC
nên AN=NB=AM=MC
Xét ΔBNC và ΔCMB có
BN=CM
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó: ΔBNC=ΔCMB
b: Ta có: ΔBNC=ΔCMB
nên \(\widehat{BCN}=\widehat{CBM}\)
hay \(\widehat{KBC}=\widehat{KCB}\)
Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)
nên ΔKBC cân tại K
a: Xét ΔBNC và ΔCMB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó: ΔBNC=ΔCMB
b: Ta có: ΔBNC=ΔCMB
nên \(\widehat{KCB}=\widehat{KBC}\)
=>ΔKBC cân tại K
hay KB=KC
a. +) Tam giác ABC cân tại A:
=> góc B = góc C
=> AB = AC
=> AM + BM = AN + CN
mà BM và CN là 2 đường trung tuyến của AB và AC
=> AM = BM = AN = CN
Xét tam giác BNC và tam giác CMB:
BM = CN (cmt)
góc B = góc C (cmt)
BC chung
=> tam giác BNC = tam giác CMB (c-g-c)
+) Ta có: BM , CN là 2 đường trung tuyến của tam giác ABC, cắt nhau tại I
=> I là trọng tâm của tam giác ABC
=> BI = \(\dfrac{2}{3}BM\)
CI = \(\dfrac{2}{3}CN\)
mà BM = CN
=> BI = CI
=> tam giác BIC cân tại I (đpcm)
b. +)Xét tam giác AIB và tam giác AIC:
AI chung
AB = AC
BI = CI
=> tam giác AIB = tam giác AIC (c-c-c)
=> góc BAI = góc CAI (2 góc tương ứng)
=> AI là tia phân giác góc A (1)
+) Xét tam giác AKB và tam giác AKC:
AK chung
AB = AC
BK = CK (vì K là trung điểm BC)
=> tam giác AKB = tam giác AKC (c-c-c)
=> AK là tia phân giác góc A (2)
Từ (1) và (2) , suy ra:
AI trùng AK
=> A, I, K thẳng hàng
Ta có: AN = BN = \(\dfrac{1}{2}\)AB (N là trung điểm của AB)
AM = CM = \(\dfrac{1}{2}\)AC (M là trung điểm của AC)
Mà AB = AC ( do tam giác ABC cân tại A)
=> AN = BN = AM = CM
Xét tam giác BNC và tam giác CMB:
+ BC chung
+ ^B = ^C (tam giác ABC cân tại A)
+ BN = CM (cmt)
=> Tam giác BNC = tam giác CMB (c-g-c)
=> ^NCB = ^MBC (2 góc tương ứng)
Hay ^KCB = ^KBC
=> Tam giác BKC cân tai K
Xét tam giác ABC: M là trung điểm của AC (gt)
N là trung điểm của AB (gt)
=> MN là đường trung bình của tam giác ABC (định nghĩa đường trung bình trong tam giác)
=> MN // BC (TC đường trung bình trong tam giác)
a) Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)
\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AN=NB=AM=MC
Xét ΔBNC và ΔCMB có
BN=CM(cmt)
\(\widehat{NBC}=\widehat{MCB}\)(hai góc ở đáy của ΔABC cân tại A)
BC chung
Do đó: ΔBNC=ΔCMB(c-g-c)
b) Xét ΔANC và ΔABM có
AN=AM(cmt)
\(\widehat{NAC}\) chung
AC=AB(ΔABC cân tại A)
Do đó: ΔANC=ΔABM(c-g-c)
⇒\(\widehat{ACN}=\widehat{ABM}\)(hai góc tương ứng)
hay \(\widehat{NBK}=\widehat{MCK}\)
Xét ΔNBK có
\(\widehat{NBK}+\widehat{NKB}+\widehat{BNK}=180^0\)(Định lí tổng ba góc trong một tam giác)(1)
Xét ΔMCK có
\(\widehat{MCK}+\widehat{MKC}+\widehat{CMK}=180^0\)(Định lí tổng ba góc trong một tam giác)(2)
Từ (1) và (2) suy ra \(\widehat{NBK}+\widehat{NKB}+\widehat{BNK}=\widehat{MCK}+\widehat{MKC}+\widehat{CMK}\)
mà \(\widehat{NBK}=\widehat{MCK}\)(cmt)
và \(\widehat{NKB}=\widehat{MKC}\)(hai góc đối đỉnh)nên \(\widehat{BNK}=\widehat{CMK}\)Xét ΔNBK và ΔMCK có \(\widehat{BNK}=\widehat{CMK}\)(cmt)BN=CM(cmt)\(\widehat{NBK}=\widehat{MCK}\)(cmt)Do đó: ΔNBK=ΔMCK(g-c-g)⇒KB=KC(hai cạnh tương ứng)Xét ΔKBC có KB=KC(cmt)nên ΔKBC cân tại K(Định nghĩa tam giác cân)a: Xét ΔBNC và ΔCMB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó: ΔBNC=ΔCMB
b: Ta có: ΔBNC=ΔCMB
nên \(\widehat{NCB}=\widehat{MBC}\)
hay \(\widehat{KBC}=\widehat{KCB}\)
Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)
nên ΔKBC cân tại K
hay KB=KC
a: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
BC chung
=>ΔNBC=ΔMCB
b: ΔNBC=ΔMCB
=>góc KBC=góc KCB
=>ΔKBC cân tại K
c: Xét tứ giácc AKCI có
M là trung điểm chung của AC và KI
nên AKCI là hình bình hành
=>CI//AK
a)Vì \(\Delta ABC\)cân , \(BM\) là phân giác của\(\widehat{B}\), \(CN\)là phân giác của \(\widehat{C}\)
\(\Rightarrow\) \(AB=AC\) hay \(\frac{1}{2}AB=\frac{1}{2}AC\) và \(BM\)và \(CN\) cũng là đường trung tuyến ứng vs 2 cạnh \(AB\)và \(AC\)
\(\Rightarrow AM=CM\)và \(AN=BN\)mà \(\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow AM=AN=CM=BN\)
Xét \(\Delta AMN\)có\(AM=AN\Rightarrow\Delta ABC\)cân \(\left(dpcm\right)\)
b)Có
\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC\)
\(\Rightarrow MN//BC\left(dpcm\right)\)
Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
BC chung
=>ΔNBC=ΔMCB
=>góc KBC=góc KCB
=>ΔKBC cân tại K