Cho tam giác ABC vuông tại B có AC=17cm. AB=15cm
A/ tính độ dài BC
B/ gọi M là trung điểm của CB. trên tia AM lấy N (M nằm giữa A và N) sao cho AM=AN. Chứng minh tam giác MBA bằng tam giác MCN và NC vuông góc BC
C/ chứng minh AB+AC>2AM
D/ gọi I là điểm trên đoạn thẳng BM sao chi IM=1/3 BM. Gọi H là giao điểm AI và BN, K là giao điểm của CH và AN. Chứng minh CH+MN > 3/2CN
a) bc = 8cm ( dùng pytago )
a, tam giác ABC vuông tại B có:
\(BA^2+BC^2=AC^2\)(đ/lí py ta-go)
hay 152+ BC2=172
=> BC2=172-152
=> BC2= 289-225
=> BC2=6
=> BC=\(\sqrt{64}=8\)(cm)
b, Xét \(\Delta BAM\)và \(\Delta CNM\)có:
MC=MA(gt)
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
MB=MC(M là trung điểm BC)
\(\Rightarrow\Delta MBA=\Delta MCN\left(c.g.c\right)\)
\(\Rightarrow\widehat{C_1}=\widehat{B}=90^0\)(2 góc t/ư)
=> \(CN\perp CB\)(đpcm)