CCho Tam Giác ABC vuông tại A đường cao AH.Lấy P là trung điểm BH. Q là trung điểm AH. Cm Tam giác HAP đồng dạng Tam giác HCQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tam giác $ABH$ và $CAH$ có:
$\widehat{AHB}=\widehat{CHA}=90^0$
$\widehat{ABH}=\widehat{CAH}$ (cùng phụ góc $\widehat{BAH}$)
$\Rightarrow \triangle ABH\sim \triangle CAH$ (g.g)
$\Rightarrow \frac{AB}{CA}=\frac{BH}{AH}=\frac{BH:2}{AH:2}=\frac{BP}{AQ}$
Xét tam giác $ABP$ và $CAQ$ có:
$\widehat{ABP}=\widehat{CAQ}$ (cùng phụ $\widehat{BAH}$)
$\frac{AB}{CA}=\frac{BP}{AQ}$ (cmt)
$\Rightarrow \triangle ABP\sim \triangle CAQ$ (c.g.c)
Ta có đpcm.
Bài giải
a) Xét tam giác ABH và CAH có:
\(\widehat{AHB}=\widehat{CHA}\left(=90^o\right)\)
\(\widehat{BAH}=\widehat{ACH}\left(=90^o-\widehat{ABC}\right)\)
\(\Rightarrow\Delta ABH\infty\Delta CAH\left(g.g\right)\)
\(\Delta ABH\infty\Delta CAH\left(g.g\right)\) (câu a) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}=\dfrac{BH\text{ : }2}{AH\text{ : 2}}=\dfrac{BP}{AQ}\)
Xét \(\Delta ABP \text{và }\Delta CAQ\) có:
\(\widehat{CAH}=\widehat{ABH}\left(=90^o-\widehat{BAH}\right)\)
\(\Rightarrow\Delta ABP\infty\Delta CAQ\left(c.g.c\right)\)
b, Ta có: PQ là đg trung bình của\(\Delta ABH\Rightarrow\text{ }PQ\text{ // }AB\text{ }\Rightarrow\text{ }PQ\perp AC\)
Mà AHPC => Q là trực tâm của \(\Delta APC\)
\(\Rightarrow\text{ }AP\perp CQ\)
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
Xét ΔAHB vuông tại H và ΔHKA vuông tại K có
góc HAB=góc KHA
=>ΔAHB đồng dạng với ΔHKA
b: ΔAHB đồng dạng với ΔHKA
=>AH/HK=AB/HA
=>AH^2=HK*AB
c: Xét ΔCAM có KI//AM
nên KI/AM=CI/CM
Xét ΔCMB có IH//MB
nên IH/MB=CI/CM
=>KI/AM=IH/MB
mà AM=MB
nên KI=IH
=>I là trung điểm của KH
Bạn tự vẽ hình nha!
a, Xét Tg ABH và CAH có:
AHB=CHA (=90)
BAH=ACH (=90-ABC)
=> ABH đồng dạng CAH (g.g)
b, Tg ABH đồng dạng CAH (câu a) => \(\frac{AB}{AC}=\frac{BH}{AH}=\frac{BH:2}{AH:2}=\frac{BP}{AQ}\)
Xét Tg ABP và CAQ có: \(\frac{BP}{AQ}=\frac{AB}{AC}\)
CAH=ABH (=90-BAH)
=> Tg ABP đồng dạng CAQ (c.g.c)
c, Ta có: PQ là đg trung bình của Tg ABH => PQ//AB => PQ \(\perp\)AC
Mà AH\(\perp\)PC => Q là trực tâm của Tg APC
=> AP \(\perp\)CQ
a: Xét ΔHMN và ΔHAB có
\(\dfrac{HM}{HA}=\dfrac{HN}{HB}\)
\(\widehat{MHN}\) chung
Do đó: ΔHMN đồng dạng với ΔHAB
b:
Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{HBA}\right)\)
Do đó: ΔHAB đồng dạng với ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
\(HM\cdot HA=\dfrac{1}{2}\cdot HA\cdot HA=\dfrac{1}{2}HA^2\)
\(HN\cdot HC=\dfrac{1}{2}\cdot HB\cdot HC=\dfrac{1}{2}\cdot HA^2\)
Do đó: \(HM\cdot HA=HN\cdot HC\)
c: \(HM\cdot HA=HN\cdot HC\)
=>\(\dfrac{HN}{HM}=\dfrac{HA}{HC}\)
Xét ΔHAN vuông tại H và ΔHCM vuông tại H có
\(\dfrac{HA}{HC}=\dfrac{HN}{HM}\)
Do đó: ΔHAN đồng dạng với ΔHCM
Bài làm
b) Xét tam giác HAP có:
Q là trung điểm BH
P là trung điểm AH
=> QP là đường trung bình
=> QP // AB
=> \(\widehat{HQP}=\widehat{QPA}\)
Xét tam giác HQP và tam giác ABC có:
\(\widehat{HQP}=\widehat{QPA}\)
\(\widehat{PHQ}=\widehat{BAC}\left(=90^0\right)\)
=> Tam giác HQP ~ Tam giác ABC ( g - g )
=> \(\frac{HQ}{AB}=\frac{HP}{AC}\Rightarrow\frac{AC}{AB}=\frac{HP}{HQ}\Rightarrow\frac{AB}{AC}=\frac{HQ}{HP}\) (1)
Xét tam giác HAB có:
QP // AB
=> Tam giác HQP ~ HAB
=> \(\frac{HQ}{QB}=\frac{HP}{PA}\Rightarrow\frac{HQ}{HP}=\frac{QB}{PA}\) (2)
Từ (1) và (2) => \(\frac{AB}{AC}=\frac{QB}{PA}\)
Xét tam giác AHC vuông ở H có:
\(\widehat{PAC}+\widehat{BCA}=90^0\)(3)
Xét tam giác ABC vuông ở A có:
\(\widehat{CBA}+\widehat{BCA}=90^0\) (4)
Từ (3) và (4) => \(\widehat{PAC}=\widehat{CBA}\)
Xét tam giác ABQ và tam giác CAP có:
\(\frac{AB}{AC}=\frac{QB}{PA}\)
\(\widehat{PAC}=\widehat{CBA}\)
=> Tam giác ABQ ~ Tam giác CAP ( c-g-c ) ( đpcm )
Bài làm
a) Vì AM là trung tuyến
=> M là trung điểm BC
=> BM = MC = BC/2 = ( BH + HC )/2 = ( 9 + 16 )/2 = 12,5 ( cm )
Ta có: BH + HM + MC = BC
=> BH + HM + MC = BH + HC
hay 9 + HM + 12,5 = 9 + 16
=> HM = 9 + 16 - 9 - 12,5
=> HM = 3,5 ( cm )
Vì tam giác ABC là tam giác vuông ở A
Mà AM trung tuyến
=> AM = MC = BM = 12,5 ( cm )
Xét tam giác AHM vuông ở H có:
Theo định lí Pytago có:
AH2 = AM2 - HM2
hay AH2 = 12,52 - 3,52
=> AH2 = 156,25 - 12,25
=> AH2 = 144
=> AH = 12 ( cm )
SABC = 1/2 . AH . HM = 1/2 . 12 . 3,5 = 21 ( cm2 )
Xét tam giác AHB vuông ở H có:
Theo định lí Py-ta-go có:
AB2 = BH2 + AH2
=> AB2 = 92 + 212
=> AB2 = 81 + 441
=> AB2 = 522
=> AB \(\approx\)22,8 ( cm )
Xét tam giác AHC vuông ở H có:
Theo định lí Pytago có:
AC2 = AH2 + HC2
=> AC2 = AH2 + ( HM + MC )2
hay AC2 = 212 + ( 3,5 + 12,5 )2
=> AC2 = 441 + 256
=> AC2 = 697
=> AC \(\approx\)26,4 ( cm )
Chu vi tam giác ABC là: AB + AC + BC = 22,8 + 26,4 + 25 = 74,2 ( cm )
SABC = 1/2 . AH . BC = 1/2 . 21 . 25 = 262,5 ( cm2 )
a) Dễ dàng cm được : tam giác HBA đồng dạng với tam giác HAC (g.g)
=> HBAH=ABAC hay BH2AH2=ABAC hay BPAQ=ABAC ; góc ABC = góc HAC
=> tam giác PBA đồng dạng với tam giác QAC (c.g.c)
b) Vì tam giác ABP đồng dạng với tam giác CAQ nên góc APB = góc AQC
=> góc APC = góc CQH (góc ngoài)
Lại có góc QHC = góc QHP = 90 độ
=> tam giác HQC đồng dạng với tam giác HPA (g.g)
c) Vì tam giác ABP đồng dạng với tam giác CAQ nên góc BAP = góc ACQ
Lại có góc BAP + góc PAC = 90 độ
=> góc ACQ + góc PAC = 90 độ
=> AP vuông góc với CQ